Research Article
BibTex RIS Cite

Sunflower Stalk Based Activated Carbon for Supercapacitors

Year 2019, , 235 - 247, 23.10.2019
https://doi.org/10.15671/hjbc.509201

Abstract

In
this study, a combination of physical and chemical activation was used to
produce activated carbon from sunflower stalks. The NaOH activated carbon
possess a high specific surface area of 2658 m2/g. The micropore
fraction and surface area obtained is much higher than a commercial activated
carbon. The electrodes from the activated carbons were electrochemically
analyzed in a two-electrode supercapacitor cell with 1 M H2SO4
electrolyte. The results show that the high surface area of sunflower activated
carbon resulted in significantly high specific capacitance of 207 F/g at 0.05
A/g current density. Moreover, a high energy density of 18.4 Wh/kg was obtained
at the power density of 80 W/kg. The results also showed the importance of pore
structure on the supercapacitor performance.

References

  • [1] M.D.D. de Leon-Garza, E. Soto-Regalado, M. Loredo-Cancino, F.D. Cerino-Cordova, R.B. Garcia-Reyes, N.E. Davila-Guzman, J.A. Loredo-Medrano, Phenol adsorption onto coffee waste - granular activated carbon: kinetics and equilibrium studies in aqueous solutions, Desalin Water Treat, 90 (2017) 231-240.
  • [2] F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions, J Clean Prod, 197 (2018) 919-929.
  • [3] N.G. Rincon-Silva, J.C. Moreno-Pirajan, L. Giraldo, Removal of phenol, p-nitrophenol and p-chlorophenol from activated carbon chemically with sulfuric acid from lignocellulosic waste material: Effect of the concentration of activating agent, Afinidad, 74 (2017) 112-123.
  • [4] W.Y. Ao, J. Fu, X. Mao, Q.H. Kang, C.M. Ran, Y. Liu, H.D. Zhang, Z.P. Gao, J. Li, G.Q. Liu, J.J. Dai, Microwave assisted preparation of activated carbon from biomass: A review, Renew Sust Energ Rev, 92 (2018) 958-979.
  • [5] M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renew Sust Energ Rev, 87 (2018) 1-21.
  • [6] P. Gonzalez-Garcia, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renew Sust Energ Rev, 82 (2018) 1393-1414.
  • [7] Y.H. Cao, K.L. Wang, X.M. Wang, Z.R. Gu, Q.H. Fan, W. Gibbons, J.D. Hoefelmeyer, P.R. Kharel, M. Shrestha, Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation, Electrochim Acta, 212 (2016) 839-847.
  • [8] E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochim Acta, 192 (2016) 110-119.
  • [9] C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors, Electrochim Acta, 52 (2007) 2498-2505.
  • [10] Y.J. Kim, B.J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K.C. Park, M. Endo, Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors, Carbon, 44 (2006) 1592-1595.
  • [11] Y.Y. Zhu, M.M. Chen, Y. Zhang, W.X. Zhao, C.Y. Wang, A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor, Carbon, 140 (2018) 404-412.
  • [12] J. Pang, W.F. Zhang, H. Zhang, J.L. Zhang, H.M. Zhang, G.P. Cao, M.F. Han, Y.S. Yang, Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors, Carbon, 132 (2018) 280-293.
  • [13] M. Jalali, F. Aboulghazi, Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions, J Mater Cycles Waste, 15 (2013) 548-555.
  • [14] E. Koseoglu, C. Akmil-Basar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass, Adv Powder Technol, 26 (2015) 811-818.
  • [15] A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption, Chem Eng J, 174 (2011) 117-125.
  • [16] V.K. Singh, E.A. Kumar, Thermodynamic analysis of single-stage and single-effect two-stage adsorption cooling cycles using indigenous coconut shell based activated carbon-CO2 pair, Int J Refrig, 84 (2017) 238-252.
  • [17] D. Ozcimen, A. Ersoy-Mericboyu, Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials, Renew Energ, 35 (2010) 1319-1324.
  • [18] K.Z. Qian, A. Kumar, K. Patil, D. Bellmer, D.H. Wang, W.Q. Yuan, R.L. Huhnke, Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char, Energies, 6 (2013) 3972-3986.
  • [19] R. Rajarao, I. Mansuri, R. Dhunna, R. Khanna, V. Sahajwalla, Study of structural evolution of chars during rapid pyrolysis of waste CDs at different temperatures, Fuel, 134 (2014) 17-25.
  • [20] O. Uner, Y. Bayrak, The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax, Micropor Mesopor Mat, 268 (2018) 225-234.
  • [21] S.S. Brum, M.L. Bianchi, V.L. Silva, M. Goncalves, M.C. Guerreiro, L.C.A. de Oliveira, Preparation and characterization of activated carbon produced from coffee waste, Quim Nova, 31 (2008) 1048-1052.
  • [22] R.H. Liu, E.H. Liu, R. Ding, K. Liu, Y. Teng, Z.Y. Luo, Z.P. Li, T.T. Hu, T.T. Liu, Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors, Ceram Int, 41 (2015) 12734-12741.
  • [23] S.X. Hu, S.L. Zhang, N. Pan, Y.L. Hsieh, High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, J Power Sources, 270 (2014) 106-112.
  • [24] B.H. Lu, Z.A. Xiao, H. Zhu, W. Xiao, W.L. Wu, D.H. Wang, Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates, J Power Sources, 298 (2015) 74-82.
  • [25] W. Cao, F. Yang, Supercapacitors from high fructose corn syrup-derived activated, Materials Today Energy, 9 (2018) 406-415.
  • [26] L.S. Ghadimi, N. Arsalani, A.G. Tabrizi, A. Mohammadi, I. Ahadzadeh, Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor, Electrochim Acta, 282 (2018) 116-127.
  • [27] T.A. Centeno, F. Stoeckli, The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons, Electrochim Acta, 52 (2006) 560-566.
  • [28] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J Power Sources, 195 (2010) 7880-7903.
  • [29] B. Xu, Y.F. Chen, G. Wei, G.P. Cao, H. Zhang, Y.S. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Mater Chem Phys, 124 (2010) 504-509.
  • [30] A. Volperts, G. Dobele, A. Zhurinsh, D. Vervikishko, E. Shkolnikov, J. Ozolinsh, Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte, New Carbon Mater, 32 (2017) 319-326.
  • [31] M. Olivares-Marin, J.A. Fernandez, M.J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, F. Stoeckli, T.A. Centeno, Cherry stones as precursor of activated carbons for supercapacitors, Mater Chem Phys, 114 (2009) 323-327.
  • [32] K.L. Van, T.T.L. Thi, Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor, Prog Nat Sci-Mater, 24 (2014) 191-198.
  • [33] B. Kishore, D. Shanmughasundaram, T.R. Penki, N. Munichandraiah, Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors, J Appl Electrochem, 44 (2014) 903-916.
  • [34] Y. Hu, T.S. Fisher, Suggested standards for reporting power and energy density in supercapacitor research, B Mater Sci, 41 (2018).
  • [35] R. Farzana, R. Rajarao, B.R. Bhat, V. Sahajwalla, Performance of an activated carbon supercapacitor electrode synthesised from waste Compact Discs (CDs), J Ind Eng Chem, 65 (2018) 387-396.
  • [36] I.I.G. Inal, S.M. Holmes, A. Banford, Z. Aktas, The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Appl Surf Sci, 357 (2015) 696-703.
  • [37] J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond, Electrochim Acta, 281 (2018) 170-188.
Year 2019, , 235 - 247, 23.10.2019
https://doi.org/10.15671/hjbc.509201

Abstract

References

  • [1] M.D.D. de Leon-Garza, E. Soto-Regalado, M. Loredo-Cancino, F.D. Cerino-Cordova, R.B. Garcia-Reyes, N.E. Davila-Guzman, J.A. Loredo-Medrano, Phenol adsorption onto coffee waste - granular activated carbon: kinetics and equilibrium studies in aqueous solutions, Desalin Water Treat, 90 (2017) 231-240.
  • [2] F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions, J Clean Prod, 197 (2018) 919-929.
  • [3] N.G. Rincon-Silva, J.C. Moreno-Pirajan, L. Giraldo, Removal of phenol, p-nitrophenol and p-chlorophenol from activated carbon chemically with sulfuric acid from lignocellulosic waste material: Effect of the concentration of activating agent, Afinidad, 74 (2017) 112-123.
  • [4] W.Y. Ao, J. Fu, X. Mao, Q.H. Kang, C.M. Ran, Y. Liu, H.D. Zhang, Z.P. Gao, J. Li, G.Q. Liu, J.J. Dai, Microwave assisted preparation of activated carbon from biomass: A review, Renew Sust Energ Rev, 92 (2018) 958-979.
  • [5] M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renew Sust Energ Rev, 87 (2018) 1-21.
  • [6] P. Gonzalez-Garcia, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renew Sust Energ Rev, 82 (2018) 1393-1414.
  • [7] Y.H. Cao, K.L. Wang, X.M. Wang, Z.R. Gu, Q.H. Fan, W. Gibbons, J.D. Hoefelmeyer, P.R. Kharel, M. Shrestha, Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation, Electrochim Acta, 212 (2016) 839-847.
  • [8] E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochim Acta, 192 (2016) 110-119.
  • [9] C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors, Electrochim Acta, 52 (2007) 2498-2505.
  • [10] Y.J. Kim, B.J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K.C. Park, M. Endo, Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors, Carbon, 44 (2006) 1592-1595.
  • [11] Y.Y. Zhu, M.M. Chen, Y. Zhang, W.X. Zhao, C.Y. Wang, A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor, Carbon, 140 (2018) 404-412.
  • [12] J. Pang, W.F. Zhang, H. Zhang, J.L. Zhang, H.M. Zhang, G.P. Cao, M.F. Han, Y.S. Yang, Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors, Carbon, 132 (2018) 280-293.
  • [13] M. Jalali, F. Aboulghazi, Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions, J Mater Cycles Waste, 15 (2013) 548-555.
  • [14] E. Koseoglu, C. Akmil-Basar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass, Adv Powder Technol, 26 (2015) 811-818.
  • [15] A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption, Chem Eng J, 174 (2011) 117-125.
  • [16] V.K. Singh, E.A. Kumar, Thermodynamic analysis of single-stage and single-effect two-stage adsorption cooling cycles using indigenous coconut shell based activated carbon-CO2 pair, Int J Refrig, 84 (2017) 238-252.
  • [17] D. Ozcimen, A. Ersoy-Mericboyu, Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials, Renew Energ, 35 (2010) 1319-1324.
  • [18] K.Z. Qian, A. Kumar, K. Patil, D. Bellmer, D.H. Wang, W.Q. Yuan, R.L. Huhnke, Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char, Energies, 6 (2013) 3972-3986.
  • [19] R. Rajarao, I. Mansuri, R. Dhunna, R. Khanna, V. Sahajwalla, Study of structural evolution of chars during rapid pyrolysis of waste CDs at different temperatures, Fuel, 134 (2014) 17-25.
  • [20] O. Uner, Y. Bayrak, The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax, Micropor Mesopor Mat, 268 (2018) 225-234.
  • [21] S.S. Brum, M.L. Bianchi, V.L. Silva, M. Goncalves, M.C. Guerreiro, L.C.A. de Oliveira, Preparation and characterization of activated carbon produced from coffee waste, Quim Nova, 31 (2008) 1048-1052.
  • [22] R.H. Liu, E.H. Liu, R. Ding, K. Liu, Y. Teng, Z.Y. Luo, Z.P. Li, T.T. Hu, T.T. Liu, Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors, Ceram Int, 41 (2015) 12734-12741.
  • [23] S.X. Hu, S.L. Zhang, N. Pan, Y.L. Hsieh, High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, J Power Sources, 270 (2014) 106-112.
  • [24] B.H. Lu, Z.A. Xiao, H. Zhu, W. Xiao, W.L. Wu, D.H. Wang, Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates, J Power Sources, 298 (2015) 74-82.
  • [25] W. Cao, F. Yang, Supercapacitors from high fructose corn syrup-derived activated, Materials Today Energy, 9 (2018) 406-415.
  • [26] L.S. Ghadimi, N. Arsalani, A.G. Tabrizi, A. Mohammadi, I. Ahadzadeh, Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor, Electrochim Acta, 282 (2018) 116-127.
  • [27] T.A. Centeno, F. Stoeckli, The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons, Electrochim Acta, 52 (2006) 560-566.
  • [28] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J Power Sources, 195 (2010) 7880-7903.
  • [29] B. Xu, Y.F. Chen, G. Wei, G.P. Cao, H. Zhang, Y.S. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Mater Chem Phys, 124 (2010) 504-509.
  • [30] A. Volperts, G. Dobele, A. Zhurinsh, D. Vervikishko, E. Shkolnikov, J. Ozolinsh, Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte, New Carbon Mater, 32 (2017) 319-326.
  • [31] M. Olivares-Marin, J.A. Fernandez, M.J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, F. Stoeckli, T.A. Centeno, Cherry stones as precursor of activated carbons for supercapacitors, Mater Chem Phys, 114 (2009) 323-327.
  • [32] K.L. Van, T.T.L. Thi, Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor, Prog Nat Sci-Mater, 24 (2014) 191-198.
  • [33] B. Kishore, D. Shanmughasundaram, T.R. Penki, N. Munichandraiah, Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors, J Appl Electrochem, 44 (2014) 903-916.
  • [34] Y. Hu, T.S. Fisher, Suggested standards for reporting power and energy density in supercapacitor research, B Mater Sci, 41 (2018).
  • [35] R. Farzana, R. Rajarao, B.R. Bhat, V. Sahajwalla, Performance of an activated carbon supercapacitor electrode synthesised from waste Compact Discs (CDs), J Ind Eng Chem, 65 (2018) 387-396.
  • [36] I.I.G. Inal, S.M. Holmes, A. Banford, Z. Aktas, The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Appl Surf Sci, 357 (2015) 696-703.
  • [37] J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond, Electrochim Acta, 281 (2018) 170-188.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Alp Yürüm 0000-0002-1284-3924

Publication Date October 23, 2019
Acceptance Date May 27, 2019
Published in Issue Year 2019

Cite

APA Yürüm, A. (2019). Sunflower Stalk Based Activated Carbon for Supercapacitors. Hacettepe Journal of Biology and Chemistry, 47(3), 235-247. https://doi.org/10.15671/hjbc.509201
AMA Yürüm A. Sunflower Stalk Based Activated Carbon for Supercapacitors. HJBC. October 2019;47(3):235-247. doi:10.15671/hjbc.509201
Chicago Yürüm, Alp. “Sunflower Stalk Based Activated Carbon for Supercapacitors”. Hacettepe Journal of Biology and Chemistry 47, no. 3 (October 2019): 235-47. https://doi.org/10.15671/hjbc.509201.
EndNote Yürüm A (October 1, 2019) Sunflower Stalk Based Activated Carbon for Supercapacitors. Hacettepe Journal of Biology and Chemistry 47 3 235–247.
IEEE A. Yürüm, “Sunflower Stalk Based Activated Carbon for Supercapacitors”, HJBC, vol. 47, no. 3, pp. 235–247, 2019, doi: 10.15671/hjbc.509201.
ISNAD Yürüm, Alp. “Sunflower Stalk Based Activated Carbon for Supercapacitors”. Hacettepe Journal of Biology and Chemistry 47/3 (October 2019), 235-247. https://doi.org/10.15671/hjbc.509201.
JAMA Yürüm A. Sunflower Stalk Based Activated Carbon for Supercapacitors. HJBC. 2019;47:235–247.
MLA Yürüm, Alp. “Sunflower Stalk Based Activated Carbon for Supercapacitors”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 3, 2019, pp. 235-47, doi:10.15671/hjbc.509201.
Vancouver Yürüm A. Sunflower Stalk Based Activated Carbon for Supercapacitors. HJBC. 2019;47(3):235-47.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc