Research Article
BibTex RIS Cite
Year 2019, Volume: 47 Issue: 1, 107 - 114, 01.02.2019

Abstract

References

  • M.K. Bayazit, L.S. Clarke, K.S. Coleman, N. Clarke, Pyridinefunctionalized single-walled carbon nanotubes as gelators for poly(acrylic acid) hydrogels, J. Am. Chem. Soc., 132 (2010) 15814-15819.
  • 2. M.K. Bayazit, K.S. Coleman, Fluorescent single-walled carbon nanotubes following the 1,3-dipolar cycloaddition of pyridinium ylides, J. Am. Chem. Soc., 131 (2009) 10670- 10676.
  • 3. S.A. Hodge, M.K. Bayazit, K.S. Coleman, M.S.P. Shaffer, Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity, Chem. Soc. Rev., 41 (2012) 4409-4429.
  • 4. M.K. Bayazit, A. Suri, K.S. Coleman, Formylation of singlewalled carbon nanotubes, Carbon, 48 (2010) 3412-3419.
  • 5. B. Gebhardt, Z. Syrgiannis, C. Backes, R. Graupner, F. Hauke, A. Hirsch, Carbon Nanotube sidewall functionalization with carbonyl compounds-modified birch conditions vs the organometallic reduction approach, J. Am. Chem. Soc., 133 (2011) 7985-7995.
  • 6. M.K. Bayazit, K.S. Coleman, Ester-functionalized singlewalled carbon nanotubes via addition of haloformates, J. Material. Sci., 49 (2014) 5190-5198.
  • 7. A.J. Clancy, J. Melbourne, M.S.P. Shaffer, A one-step route to solubilised, purified or functionalised single-walled carbon nanotubes, J. Mater. Chem. A, 3 (2015) 16708-16715.
  • 8. M. De Marco, F. Markoulidis, R. Menzel, S.M. Bawaked, M. Mokhtar, S.A. Al-Thabaiti, S.N. Basahel, M.S.P. Shaffer, Crosslinked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry, J. Mater. Chem. A, 4 (2016) 5385-5389. Figure 7. TEM images of (a) [nBu-SWCNTs-NBA] (2) and (b) [SWCNTs-NBA] (3). M.K. Bayazit / Hacettepe J. Biol. & C 114 hem., 2019, 47 (1), 107–114
  • 9. G. Viswanathan, N. Chakrapani, H.C. Yang, B.Q. Wei, H.S. Chung, K.W. Cho, C.Y. Ryu, P.M. Ajayan, Single-step in situ synthesis of polymer-grafted single-wall nanotube composites, J. Am. Chem. Soc., 125 (2003) 9258-9259.
  • 10. R. Blake, Y.K. Gun’ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau, A generic organometallic approach toward ultra-strong carbon nanotube polymer composites, J. Am. Chem. Soc., 126 (2004) 10226-10227.
  • 11. S. Chen, W. Shen, G. Wu, D. Chen, M. Jiang, A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups, Chem. Phys. Lett., 402 (2005) 312-317.
  • 12. S. Pekker, J.P. Salvetat, E. Jakab, J.M. Bonard, L. Forró, Hydrogenation of carbon nanotubes and graphite in liquid ammonia, J. Phys. Chem. B, 105 (2001) 7938-7943.
  • 13. A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, P. Petit, Spontaneous dissolution of a single-wall carbon nanotube salt, J. Am. Chem. Soc., 127 (2005) 8-9.
  • 14. O. Roubeau, A. Lucas, A. Pénicaud, A. Derré, Covalent functionalization of carbon nanotubes through organometallic reduction and electrophilic attack, J. Nanosci. Nanotechnol., 7 (2007) 3509-3513.
  • 15. M.K. Bayazit, S.A. Hodge, A.J. Clancy, R. Menzel, S. Chen, M.S.P. Shaffer, Carbon nanotube anions for the preparation of gold nanoparticle–nanocarbon hybrids, Chem. Comm., 52 (2016) 1934-1937.
  • 16. A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, M.S.P. Shaffer, Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes, Chem. Rev., 118 (2018) 7363-7408.
  • 17. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409 (2005) 47-99.
  • 18. M.S. Strano, Probing chiral selective reactions using a revised kataura plot for the interpretation of single-walled carbon nanotube spectroscopy, J. Am. Chem. Soc., 125 (2003) 16148-16153.
  • 19. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy, Nano Lett., 10 (2010) 751-758.
  • 20. J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Solution properties of single-walled carbon nanotubes, Science, 282 (1998) 95-98.
  • 21. M.E. Itkis, S. Niyogi, M.E. Meng, M.A. Hamon, H. Hu, R.C. Haddon, Spectroscopic study of the fermi level electronic structure of single-walled carbon nanotubes, Nano Lett., 2 (2002) 155-159.
  • 22. D. Wunderlich, F. Hauke, A. Hirsch, Preferred functionalization of metallic and small-diameter singlewalled carbon nanotubes by nucleophilic addition of organolithium and -magnesium compounds followed by reoxidation, Chem. Eur. J., 14 (2008) 1607-1614.

Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile

Year 2019, Volume: 47 Issue: 1, 107 - 114, 01.02.2019

Abstract

Reductive chemistries have widely been used to functionalize single-walled carbon nanotubes (SWCNTs). However, the reactivity of negatively charged SWCNTs (NC-SWCNTs), prepared by different reductive chemistries, to the same electrophilic reagent has not been evaluated. Here in, the first example of the reactivity comparison of two different NC-SWCNTs towards 3-nitrophthalic anhydride is presented, and two novel functionalized SWCNTs are synthesized and characterized. The NC-SWCNTs, that are denoted as [(nBu―SWCNTn)-•Lin+] and [SWCNTn-•Lin+], are prepared via n-butyl lithium and lithium naphthalenide addition, respectively, and are reacted by 3-nitrophthalic anhydride under dry conditions. The resulting functionalized SWCNTs are characterized by Raman, UV-vis-NIR, TGA-MS, XPS, and TEM. The reactivity of [(nBu―SWCNTn)-•Lin+] towards electrophilic 3-nitrophthalic anhydride is found to be higher than [SWCNTn-•Lin+]. This is probably due to the high nucleophilic character of [(nBu―SWCNTn)-•Lin+] which bears lone pair electrons and electron-donating butyl groups

References

  • M.K. Bayazit, L.S. Clarke, K.S. Coleman, N. Clarke, Pyridinefunctionalized single-walled carbon nanotubes as gelators for poly(acrylic acid) hydrogels, J. Am. Chem. Soc., 132 (2010) 15814-15819.
  • 2. M.K. Bayazit, K.S. Coleman, Fluorescent single-walled carbon nanotubes following the 1,3-dipolar cycloaddition of pyridinium ylides, J. Am. Chem. Soc., 131 (2009) 10670- 10676.
  • 3. S.A. Hodge, M.K. Bayazit, K.S. Coleman, M.S.P. Shaffer, Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity, Chem. Soc. Rev., 41 (2012) 4409-4429.
  • 4. M.K. Bayazit, A. Suri, K.S. Coleman, Formylation of singlewalled carbon nanotubes, Carbon, 48 (2010) 3412-3419.
  • 5. B. Gebhardt, Z. Syrgiannis, C. Backes, R. Graupner, F. Hauke, A. Hirsch, Carbon Nanotube sidewall functionalization with carbonyl compounds-modified birch conditions vs the organometallic reduction approach, J. Am. Chem. Soc., 133 (2011) 7985-7995.
  • 6. M.K. Bayazit, K.S. Coleman, Ester-functionalized singlewalled carbon nanotubes via addition of haloformates, J. Material. Sci., 49 (2014) 5190-5198.
  • 7. A.J. Clancy, J. Melbourne, M.S.P. Shaffer, A one-step route to solubilised, purified or functionalised single-walled carbon nanotubes, J. Mater. Chem. A, 3 (2015) 16708-16715.
  • 8. M. De Marco, F. Markoulidis, R. Menzel, S.M. Bawaked, M. Mokhtar, S.A. Al-Thabaiti, S.N. Basahel, M.S.P. Shaffer, Crosslinked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry, J. Mater. Chem. A, 4 (2016) 5385-5389. Figure 7. TEM images of (a) [nBu-SWCNTs-NBA] (2) and (b) [SWCNTs-NBA] (3). M.K. Bayazit / Hacettepe J. Biol. & C 114 hem., 2019, 47 (1), 107–114
  • 9. G. Viswanathan, N. Chakrapani, H.C. Yang, B.Q. Wei, H.S. Chung, K.W. Cho, C.Y. Ryu, P.M. Ajayan, Single-step in situ synthesis of polymer-grafted single-wall nanotube composites, J. Am. Chem. Soc., 125 (2003) 9258-9259.
  • 10. R. Blake, Y.K. Gun’ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau, A generic organometallic approach toward ultra-strong carbon nanotube polymer composites, J. Am. Chem. Soc., 126 (2004) 10226-10227.
  • 11. S. Chen, W. Shen, G. Wu, D. Chen, M. Jiang, A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups, Chem. Phys. Lett., 402 (2005) 312-317.
  • 12. S. Pekker, J.P. Salvetat, E. Jakab, J.M. Bonard, L. Forró, Hydrogenation of carbon nanotubes and graphite in liquid ammonia, J. Phys. Chem. B, 105 (2001) 7938-7943.
  • 13. A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, P. Petit, Spontaneous dissolution of a single-wall carbon nanotube salt, J. Am. Chem. Soc., 127 (2005) 8-9.
  • 14. O. Roubeau, A. Lucas, A. Pénicaud, A. Derré, Covalent functionalization of carbon nanotubes through organometallic reduction and electrophilic attack, J. Nanosci. Nanotechnol., 7 (2007) 3509-3513.
  • 15. M.K. Bayazit, S.A. Hodge, A.J. Clancy, R. Menzel, S. Chen, M.S.P. Shaffer, Carbon nanotube anions for the preparation of gold nanoparticle–nanocarbon hybrids, Chem. Comm., 52 (2016) 1934-1937.
  • 16. A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, M.S.P. Shaffer, Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes, Chem. Rev., 118 (2018) 7363-7408.
  • 17. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409 (2005) 47-99.
  • 18. M.S. Strano, Probing chiral selective reactions using a revised kataura plot for the interpretation of single-walled carbon nanotube spectroscopy, J. Am. Chem. Soc., 125 (2003) 16148-16153.
  • 19. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy, Nano Lett., 10 (2010) 751-758.
  • 20. J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Solution properties of single-walled carbon nanotubes, Science, 282 (1998) 95-98.
  • 21. M.E. Itkis, S. Niyogi, M.E. Meng, M.A. Hamon, H. Hu, R.C. Haddon, Spectroscopic study of the fermi level electronic structure of single-walled carbon nanotubes, Nano Lett., 2 (2002) 155-159.
  • 22. D. Wunderlich, F. Hauke, A. Hirsch, Preferred functionalization of metallic and small-diameter singlewalled carbon nanotubes by nucleophilic addition of organolithium and -magnesium compounds followed by reoxidation, Chem. Eur. J., 14 (2008) 1607-1614.
There are 22 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mustafa K. Bayazit

Publication Date February 1, 2019
Acceptance Date January 25, 2019
Published in Issue Year 2019 Volume: 47 Issue: 1

Cite

APA Bayazit, M. K. (2019). Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile. Hacettepe Journal of Biology and Chemistry, 47(1), 107-114.
AMA Bayazit MK. Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile. HJBC. February 2019;47(1):107-114.
Chicago Bayazit, Mustafa K. “Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile”. Hacettepe Journal of Biology and Chemistry 47, no. 1 (February 2019): 107-14.
EndNote Bayazit MK (February 1, 2019) Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile. Hacettepe Journal of Biology and Chemistry 47 1 107–114.
IEEE M. K. Bayazit, “Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile”, HJBC, vol. 47, no. 1, pp. 107–114, 2019.
ISNAD Bayazit, Mustafa K. “Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile”. Hacettepe Journal of Biology and Chemistry 47/1 (February 2019), 107-114.
JAMA Bayazit MK. Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile. HJBC. 2019;47:107–114.
MLA Bayazit, Mustafa K. “Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 1, 2019, pp. 107-14.
Vancouver Bayazit MK. Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile. HJBC. 2019;47(1):107-14.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc