BibTex RIS Cite

Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid

Year 2012, Volume: 40 Issue: 1, 7 - 21, 01.01.2012

Abstract

This paper reports α- and β-glucosidase inhibitory and radical scavenging potential of the metabolites; salazinic acid, sekikaic acid and usnic acid isolated from three terrestrial natural lichen species Ramalina celastri, Ramalina nervulosa and Ramalina pacifica of the genus Ramalinaceae. Lichen metabolites showed both glucosidase inhibitory and radical scavenging capacity. Half-inhibiting concentration IC50 values of the lichen metabolites; salazinic acid, sekikaic acid and usnic acid are 13.8 to 18.1, 13.8 to 14.6 and 17.7 to 18.9 μg/ mL for the α- and β-glucosidase inhibition. Scavenging of radicals are found with an IC50 values of salazinic acid, sekikaic acid and usnic acid are 17.2 to 20.5, 13.7 to 17.4 and 18.8 to 25.5 μg/mL respectively. Inhibition kinetic studies of the metabolite towards α- and β-glucosidase showed sekikaic acid and salazinic acid have competitive inhibition towards α-glucosidase activity and noncompetitive inhibition for β-glucosidase activity. Usnic acid showed noncompetitive type of inhibition for α-glucosidase and uncompetitive for β-glucosidase activity.

References

  • B. Winchester, GW. Fleet, Amino-sugar glycosidase inhibitors: versatile tools for glycobiologists, Glycobiology, 2 (1992) 199.
  • L. Xiancui, N. Rongli, F. Xiao, H. Lijun, Z. Lixin, Macroalage as a source of alpha-glucosidase inhibitors, Chinese J. Ocean. Limnol., 23 (2005) 354.
  • H. Gao, YN. Huang, B. Gao, P. Li, C. Inagaki, J. Kawabata, Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chemistry, 108 (2008) 965.
  • A. Mehta, N. Zitzmann, PM. Rudd, TM. Block, RA. Dwek, α-Glucosidase inhibitors as potential broad based anti-viral agents, FEBS Letters, 430 (1998) 17.
  • A. Sánchez-Medina, K. García-Sosa, F. May- Pat, LM. Pea-Rodríguez, Evaluation of biological activity of crude extracts from plants used in Yucatecan traditional medicine Part I. Antioxidant, antimicrobial and β-glucosidase inhibitory activities, Phytomedicine, 8 (2001) 144.
  • CA. Simoes-Pires, B. Hmicha, A. Marston, K. Hostettmann, A TLC bioautographic method for the detection of α- β-glucosidase inhibitors in plant extracts, Phytochem. Analysis, 20 (2009) 511. 7. K. Molnár, E. Farkas, Current results on biological activities of lichen secondary metabolites: a review, Zeitschrift für aturforschung C, 65 (2010) 157.
  • AC. Maritim, RA. Sanders, JB. Watkins, Effect of α lipoic acid on biomarkers of oxidative stress in streptozotoc in-induced diabetic rats, J. Nut. Biochem., 14 (2003) 288.
  • L. Jin, HY. Xue, LJ. Jin, SY. Li, YP. Xu, Antioxidant and pancreas protective effect of aucubin on rats with streptozotocin induced diabetes. European Journal of Pharmacology, 582 (2008) 162.
  • Y. Yao, W. Sang, M. Zhou, G. Ren, Antioxidant and α- glucosidase inhibitory activity of colored grains in China, J. Agric. & Food Chem., 58 (2010) 770.
  • KM. Ramkumar, B. Thayumanavan, T. Palvannan, P. Rajaguru, Inhibitory effect of Gymnema montanum leaves on α-glucosidase activity and α-amylase activity and their relationship with polyphenolic content, Medic. Chem. Res., 19 (2010) 948.
  • BC. Behera, U. Makhija, Inhibition of tyrosinase and xanthine oxidase by lichen species Bulbothrix seschwanesis, Current Science, 82 (2001) 61.
  • BC. Behera, B. Adawadkar, U. Makhija, Inhibitory activity of xanthine oxidase and superoxide- scavenging activity in some taxa of the lichen family Graphidaceae. Phytomedicine, 10 (2003) 536.
  • BC. Behera, B. Adawadkar, U. Makhija, Capacity of some Graphidaceous lichens to scavenge superoxide and inhibition of tyrosinase and xanthine oxidase activities, Current Science, 87 (2004) 83.
  • BC. Behera, N. Verma, A. Sonone, U. Makhija, Evaluation of antioxidant potential of the cultured mycobiont of a lichen Usnea ghattensis. Phytotherapy Research, 19 (2005) 58.
  • BC. Behera, N. Verma, A. Sonone, U. Makhija, Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnology Letters, 27 (2005) 991.
  • BC. Behera, N. Verma, A. Sonone, U. Makhija, Determination of antioxidative potential of lichen Usnea ghattensis in vitro, LWT-Food Science & Technology, 39 (2006) 80.
  • N. Verma, BC. Behera, U. Makhija, Antioxidant and hepatoprotective activity of a lichen Usnea ghattensis in vitro, App. Biochem. & Biotech., 151 (2008) 167.
  • N. Verma, BC. Behera, A. Sonone, U. Makhija, Cell aggregates derived from natural lichen thallus fragments: Antioxidant activities of lichen metabolites developed in vitro, Natural Product Communications, 3 (2008) 1911.
  • N. Verma, BC. Behera, A. Sonone, U. Makhija, Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in vitro. African Journal of Biochemistry Research, 2 (2008) 225.
  • CF. Culberson, HD. Kristinsson, A standardized method for the identification of lichen products. Journal of Chromatography, 45 (1972) 85.
  • GB. Feige, HT. Lumbsch, S. Huneck, JA. Elix, The identification of lichen substances by a standardized high-performance liquid chromatographic method, Journal of Chromatography, 646 (1993) 417.
  • S. Huneck, I. Yoshimura, Identification of lichen substances. Springer, Berlin (1996).
  • Yoshimura, Y. Kinoshita, Y. Yamamoto, S. Huneck, Y. Yamada, Analysis of secondary metabolites from lichen by high performance liquid chromatography with a photodiode array detector, Phytochemical Analysis, 5 (1994) 197.
  • I. Yoshimura, T. Kurokawa, Y. Kinoshita, Y. Yamamoto, H. Miyawaki, Lichen substances in cultured lichens, J. Hattori Bot. Lab., 76 (1994) 249.
  • JC. Espin, C. Solar-Rivas, HJ. Wichers, Charac- terization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl- 1-picrylhydrazyl radical, J. Agric. & Food Chem., 48 (2000) 648.
  • K. Kyoung-Ja, Y. Yang, J. Kim, Production of α-glucosidase inhibitor by β-glucosidase inhibitor producing Bacillus lentimorbus B-6, Journal of Microb. & Biotech., 12 (2002) 895.
  • MS. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 26 (1958) 1199.
  • C. Liegeois, G. Lermusieau, S. Collin, Measuring antioxidant efficiency of wort, malt, and hops against the 2,2’-azobis(2-amidinopropane) dihydrochlo- ride-induced oxidation of an aqueous dispersion of linoleic acid, J. Agric. & Food Chem., 48 (2000) 1129.
  • M. Nishimiki, NA. Rao, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen, Biochem. & Biophy. Res. Com., 46 (1972) 849.
  • L. Marcocci, JJ. Maguire, MT. Droy-Lefaix, L. Parker, The nitric oxide-scavenging properties of Ginkgo biloba extract EGB 761, Biochem. & Biophy.Res.Com., 201 (1994) 748.
  • NJ. Miller, AT. Diplock, CA. Rice-Evans, Evaluation of the total antioxidant as a marker of the deterioration of apple juice on storage, J. Agric. & Food Chem., 43 (1995) 1794.
  • K. Slinkard, VL. Singleton, Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. & Viticult., 28 (1977) 49.
  • M. DuBois, KA. Gilles, JK. Hamilton, PA. Rebers, F. Smith, Colorimetric method for the determination of sugars and related substances, Analytical Chemistry, 28 (1956) 350.
  • MM. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72 (1976) 248.
  • I. Oksanen, Ecological and biotechnological aspects of lichens, App. Microb. & Biotech., 73 (2006) 723.
  • S. Sancheti, S. Sancheti, Seo Sung-Yum, Chaenomeles Sinensis: A potent α- and β-glucosidase inhibitor, Am. J. Pharm. & Toxic., 4 (2009) 9.
  • M. Toeller, α-Glucosidase inhibitors in diabetes: efficacy in NIDDM subjects, Euro. J. Clinic. Invest., 24 (1994) 31.
  • Yoon Ji-Won, T. Onodera, AL. Notkins, Virus- induced diabetes mellitus, XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4, J. Exp. Med., 148 (1978) 1068.
  • V. Ani, KA. Naidu, Antihyperglycemic activity of polyphenolic compounds of black/bitter cumin Centratherum anthelminticum (L.) Kuntze seeds. European Food Research & Technology, 226 (2008) 897.
  • RM. Rupercht, S. Mullaney, J. Andersen, R. Bronson, In vivo analysis of castanospermine, a candidate antiretroviral agent, J. Acq. Imm. Defic. Synd., 2 (1989) 149.
  • V. Shukla, GP. Joshi, MSM. Rawat, Lichens as a potential natural source of bioactive compounds: a review, Phytochemistry Reviews, 9 (2010) 303.
  • VM. Thadani, V. Karunaratne, MI. Choudhary, Novel alpha glucosidase inhibitors from lichens. US Patent 20080318916A1, (2008).
  • VZ. Lankin, VI. Korchin, GG. Konovalova, MO. Lisina, AK. Tikhaze, IG. Akmaev, Role of antioxidant enzymes and antioxidant compound probucol in antiradical protection of pancreatic β-cells during alloxan- induced diabetes, Bull. Exp.Bio. & Med., 1 (2004) 20.
  • H. Matsuura, H. Miyazaki, C. Asakawa, T. Yoshihara, J. Mizutani, Isolation of α-glusosidase inhibitors from hyssop (Hyssopusofficinalis), Phytochem., 65 (2004) 91.
  • P. McCue, K. Shetty, Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro, Asia Pacific J. Clinic. Nut., 13 (2004) 101.
  • A. Marin, F. Farreres, FA. Thomas-Barberan, MI. Gill, Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum anuum L.), J. Agric. & Food Chem., 52 (2004) 3861.

Liken Metabolitleri Salazinik, Sekikaik ve Usnik Asitin Glikosidaz Engelleyici ve Radikal Süpürücü Özelliği

Year 2012, Volume: 40 Issue: 1, 7 - 21, 01.01.2012

Abstract

Bu makale, Ramalinaceae ailesine ait Ramalina celastri, Ramalina nervulosa ve Ramalina pacifica isimli üç doğal kara likeninden izole edilen salazinik, sekikaik ve usnik asit metabolitlerinin α- ve β-glukosidaz engelleyici ve radikal süpürücü potansiyelini anlatmaktadır. Liken metabolitleri her iki glukosidaz engelleme ve radikal süpürücü kapasiteye sahiptir. α- ve β- glukosidaz inhibisyonu için liken metabolitlerinin yarı inhibisyon derişimi IC50 değerleri 13.8-18.1, 13.8-14.6 ve 17.7-18.9 µg/mL’dir. Salazinik, sekikaik ve usnik asitin IC50 radikal süpürme değerleri sırasıyla 17.2-20.5, 13.7-17.4 ve 18.8-25.5 µg/mL olarak bulunmuştur. Metabolitlerin α- ve β-glukosidaza yönelik inhibisyon kinetik çalışmaları sekikaik ve salazinik asitin α-glukosidaz aktivitesine yarışmalı ve β-glukosidaz aktivitesine yarışmasız inhibisyon yaptıklarını göstermektedir. Usnik asit α-glukosidaz aktivitesi için yarışmasız ve β-glukosidaz aktivitesi için yarışma dışı inhibisyon göstermiştir

References

  • B. Winchester, GW. Fleet, Amino-sugar glycosidase inhibitors: versatile tools for glycobiologists, Glycobiology, 2 (1992) 199.
  • L. Xiancui, N. Rongli, F. Xiao, H. Lijun, Z. Lixin, Macroalage as a source of alpha-glucosidase inhibitors, Chinese J. Ocean. Limnol., 23 (2005) 354.
  • H. Gao, YN. Huang, B. Gao, P. Li, C. Inagaki, J. Kawabata, Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chemistry, 108 (2008) 965.
  • A. Mehta, N. Zitzmann, PM. Rudd, TM. Block, RA. Dwek, α-Glucosidase inhibitors as potential broad based anti-viral agents, FEBS Letters, 430 (1998) 17.
  • A. Sánchez-Medina, K. García-Sosa, F. May- Pat, LM. Pea-Rodríguez, Evaluation of biological activity of crude extracts from plants used in Yucatecan traditional medicine Part I. Antioxidant, antimicrobial and β-glucosidase inhibitory activities, Phytomedicine, 8 (2001) 144.
  • CA. Simoes-Pires, B. Hmicha, A. Marston, K. Hostettmann, A TLC bioautographic method for the detection of α- β-glucosidase inhibitors in plant extracts, Phytochem. Analysis, 20 (2009) 511. 7. K. Molnár, E. Farkas, Current results on biological activities of lichen secondary metabolites: a review, Zeitschrift für aturforschung C, 65 (2010) 157.
  • AC. Maritim, RA. Sanders, JB. Watkins, Effect of α lipoic acid on biomarkers of oxidative stress in streptozotoc in-induced diabetic rats, J. Nut. Biochem., 14 (2003) 288.
  • L. Jin, HY. Xue, LJ. Jin, SY. Li, YP. Xu, Antioxidant and pancreas protective effect of aucubin on rats with streptozotocin induced diabetes. European Journal of Pharmacology, 582 (2008) 162.
  • Y. Yao, W. Sang, M. Zhou, G. Ren, Antioxidant and α- glucosidase inhibitory activity of colored grains in China, J. Agric. & Food Chem., 58 (2010) 770.
  • KM. Ramkumar, B. Thayumanavan, T. Palvannan, P. Rajaguru, Inhibitory effect of Gymnema montanum leaves on α-glucosidase activity and α-amylase activity and their relationship with polyphenolic content, Medic. Chem. Res., 19 (2010) 948.
  • BC. Behera, U. Makhija, Inhibition of tyrosinase and xanthine oxidase by lichen species Bulbothrix seschwanesis, Current Science, 82 (2001) 61.
  • BC. Behera, B. Adawadkar, U. Makhija, Inhibitory activity of xanthine oxidase and superoxide- scavenging activity in some taxa of the lichen family Graphidaceae. Phytomedicine, 10 (2003) 536.
  • BC. Behera, B. Adawadkar, U. Makhija, Capacity of some Graphidaceous lichens to scavenge superoxide and inhibition of tyrosinase and xanthine oxidase activities, Current Science, 87 (2004) 83.
  • BC. Behera, N. Verma, A. Sonone, U. Makhija, Evaluation of antioxidant potential of the cultured mycobiont of a lichen Usnea ghattensis. Phytotherapy Research, 19 (2005) 58.
  • BC. Behera, N. Verma, A. Sonone, U. Makhija, Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnology Letters, 27 (2005) 991.
  • BC. Behera, N. Verma, A. Sonone, U. Makhija, Determination of antioxidative potential of lichen Usnea ghattensis in vitro, LWT-Food Science & Technology, 39 (2006) 80.
  • N. Verma, BC. Behera, U. Makhija, Antioxidant and hepatoprotective activity of a lichen Usnea ghattensis in vitro, App. Biochem. & Biotech., 151 (2008) 167.
  • N. Verma, BC. Behera, A. Sonone, U. Makhija, Cell aggregates derived from natural lichen thallus fragments: Antioxidant activities of lichen metabolites developed in vitro, Natural Product Communications, 3 (2008) 1911.
  • N. Verma, BC. Behera, A. Sonone, U. Makhija, Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in vitro. African Journal of Biochemistry Research, 2 (2008) 225.
  • CF. Culberson, HD. Kristinsson, A standardized method for the identification of lichen products. Journal of Chromatography, 45 (1972) 85.
  • GB. Feige, HT. Lumbsch, S. Huneck, JA. Elix, The identification of lichen substances by a standardized high-performance liquid chromatographic method, Journal of Chromatography, 646 (1993) 417.
  • S. Huneck, I. Yoshimura, Identification of lichen substances. Springer, Berlin (1996).
  • Yoshimura, Y. Kinoshita, Y. Yamamoto, S. Huneck, Y. Yamada, Analysis of secondary metabolites from lichen by high performance liquid chromatography with a photodiode array detector, Phytochemical Analysis, 5 (1994) 197.
  • I. Yoshimura, T. Kurokawa, Y. Kinoshita, Y. Yamamoto, H. Miyawaki, Lichen substances in cultured lichens, J. Hattori Bot. Lab., 76 (1994) 249.
  • JC. Espin, C. Solar-Rivas, HJ. Wichers, Charac- terization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl- 1-picrylhydrazyl radical, J. Agric. & Food Chem., 48 (2000) 648.
  • K. Kyoung-Ja, Y. Yang, J. Kim, Production of α-glucosidase inhibitor by β-glucosidase inhibitor producing Bacillus lentimorbus B-6, Journal of Microb. & Biotech., 12 (2002) 895.
  • MS. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 26 (1958) 1199.
  • C. Liegeois, G. Lermusieau, S. Collin, Measuring antioxidant efficiency of wort, malt, and hops against the 2,2’-azobis(2-amidinopropane) dihydrochlo- ride-induced oxidation of an aqueous dispersion of linoleic acid, J. Agric. & Food Chem., 48 (2000) 1129.
  • M. Nishimiki, NA. Rao, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen, Biochem. & Biophy. Res. Com., 46 (1972) 849.
  • L. Marcocci, JJ. Maguire, MT. Droy-Lefaix, L. Parker, The nitric oxide-scavenging properties of Ginkgo biloba extract EGB 761, Biochem. & Biophy.Res.Com., 201 (1994) 748.
  • NJ. Miller, AT. Diplock, CA. Rice-Evans, Evaluation of the total antioxidant as a marker of the deterioration of apple juice on storage, J. Agric. & Food Chem., 43 (1995) 1794.
  • K. Slinkard, VL. Singleton, Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. & Viticult., 28 (1977) 49.
  • M. DuBois, KA. Gilles, JK. Hamilton, PA. Rebers, F. Smith, Colorimetric method for the determination of sugars and related substances, Analytical Chemistry, 28 (1956) 350.
  • MM. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72 (1976) 248.
  • I. Oksanen, Ecological and biotechnological aspects of lichens, App. Microb. & Biotech., 73 (2006) 723.
  • S. Sancheti, S. Sancheti, Seo Sung-Yum, Chaenomeles Sinensis: A potent α- and β-glucosidase inhibitor, Am. J. Pharm. & Toxic., 4 (2009) 9.
  • M. Toeller, α-Glucosidase inhibitors in diabetes: efficacy in NIDDM subjects, Euro. J. Clinic. Invest., 24 (1994) 31.
  • Yoon Ji-Won, T. Onodera, AL. Notkins, Virus- induced diabetes mellitus, XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4, J. Exp. Med., 148 (1978) 1068.
  • V. Ani, KA. Naidu, Antihyperglycemic activity of polyphenolic compounds of black/bitter cumin Centratherum anthelminticum (L.) Kuntze seeds. European Food Research & Technology, 226 (2008) 897.
  • RM. Rupercht, S. Mullaney, J. Andersen, R. Bronson, In vivo analysis of castanospermine, a candidate antiretroviral agent, J. Acq. Imm. Defic. Synd., 2 (1989) 149.
  • V. Shukla, GP. Joshi, MSM. Rawat, Lichens as a potential natural source of bioactive compounds: a review, Phytochemistry Reviews, 9 (2010) 303.
  • VM. Thadani, V. Karunaratne, MI. Choudhary, Novel alpha glucosidase inhibitors from lichens. US Patent 20080318916A1, (2008).
  • VZ. Lankin, VI. Korchin, GG. Konovalova, MO. Lisina, AK. Tikhaze, IG. Akmaev, Role of antioxidant enzymes and antioxidant compound probucol in antiradical protection of pancreatic β-cells during alloxan- induced diabetes, Bull. Exp.Bio. & Med., 1 (2004) 20.
  • H. Matsuura, H. Miyazaki, C. Asakawa, T. Yoshihara, J. Mizutani, Isolation of α-glusosidase inhibitors from hyssop (Hyssopusofficinalis), Phytochem., 65 (2004) 91.
  • P. McCue, K. Shetty, Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro, Asia Pacific J. Clinic. Nut., 13 (2004) 101.
  • A. Marin, F. Farreres, FA. Thomas-Barberan, MI. Gill, Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum anuum L.), J. Agric. & Food Chem., 52 (2004) 3861.
There are 46 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Neeraj Verma This is me

Bhaskar Charan Behera This is me

Bharati Om Sharma This is me

Publication Date January 1, 2012
Published in Issue Year 2012 Volume: 40 Issue: 1

Cite

APA Verma, N., Behera, B. C., & Sharma, B. O. (2012). Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid. Hacettepe Journal of Biology and Chemistry, 40(1), 7-21.
AMA Verma N, Behera BC, Sharma BO. Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid. HJBC. January 2012;40(1):7-21.
Chicago Verma, Neeraj, Bhaskar Charan Behera, and Bharati Om Sharma. “Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid”. Hacettepe Journal of Biology and Chemistry 40, no. 1 (January 2012): 7-21.
EndNote Verma N, Behera BC, Sharma BO (January 1, 2012) Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid. Hacettepe Journal of Biology and Chemistry 40 1 7–21.
IEEE N. Verma, B. C. Behera, and B. O. Sharma, “Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid”, HJBC, vol. 40, no. 1, pp. 7–21, 2012.
ISNAD Verma, Neeraj et al. “Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid”. Hacettepe Journal of Biology and Chemistry 40/1 (January 2012), 7-21.
JAMA Verma N, Behera BC, Sharma BO. Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid. HJBC. 2012;40:7–21.
MLA Verma, Neeraj et al. “Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid”. Hacettepe Journal of Biology and Chemistry, vol. 40, no. 1, 2012, pp. 7-21.
Vancouver Verma N, Behera BC, Sharma BO. Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid. HJBC. 2012;40(1):7-21.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc