Research Article
BibTex RIS Cite

Year 2025, Volume: 53 Issue: 4, 11 - 19, 01.10.2025
https://doi.org/10.15671/hjbc.1547339

Abstract

References

  • V. Gounden, M. Singh, Hydrogels and Wound Healing: Current and Future Prospects, Gels, 10 (2024) 43.
  • E.F. Demir, E. Özçalışkan, H. Karakaş, M. Uygun, D. Aktaş Uygun, S. Akgöl, A. Denizli, Synthesis and characterization of albumin imprinted polymeric hydrogel membranes for proteomic studies, J. Biomater. Sci. Polym. Ed., 29 (2018) 2218–2236.
  • B. Özkahraman, E. Tamahkar, N. İdil, A. Kılıç Suloglu, I. Perçin, Evaluation of hyaluronic acid nanoparticle embedded chitosan-gelatin hydrogels for antibiotic release, Drug Dev. Res., 82 (2021) 241–250.
  • S. Morariu, M. Bercea, L.M. Gradinaru, I. Rosca, M. Avadanei, Versatile poly(vinyl alcohol)/clay physical hydrogels with tailorable structure as potential candidates for wound healing applications, Mater. Sci. Eng. C. Mater. Biol. Appl., 109 (2020) 110395.
  • F.R. Diniz, R.C.A.P. Maia, L. Rannier, L.N. Andrade, M. V. Chaud, C.F. da Silva, C.B. Corrêa, R.L.C. de Albuquerque Junior, L.P. da Costa, S.R. Shin, S. Hassan, E. Sanchez-Lopez, E.B. Souto, P. Severino, Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing In Vivo, Nanomaterials (Basel), 10 (2020) 390.
  • C.M. Cleetus, F.A. Primo, G. Fregoso, N.L. Raveendran, J.C. Noveron, C.T. Spencer, C. V. Ramana, B. Joddar, Alginate Hydrogels with Embedded ZnO Nanoparticles for Wound Healing Therapy, Int. J. Nanomedicine, 15 (2020) 5097–5111.
  • Z. Abdollahi, E.N. Zare, F. Salimi, I. Goudarzi, F.R. Tay, P. Makvandi, Bioactive Carboxymethyl Starch-Based Hydrogels Decorated with CuO Nanoparticles: Antioxidant and Antimicrobial Properties and Accelerated Wound Healing In Vivo, Int. J. Mol. Sci., 22 (2021) 1–18.
  • F. Wahid, J.J. Yin, D.D. Xue, H. Xue, Y.S. Lu, C. Zhong, L.Q. Chu, Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels, Int. J. Biol. Macromol., 88 (2016) 273–279.
  • F. Naserian, A.S. Mesgar, Development of antibacterial and superabsorbent wound composite sponges containing carboxymethyl cellulose/gelatin/Cu-doped ZnO nanoparticles, Colloids Surf. B.Biointerfaces, 218 (2022) 112729.
  • R. Rakhshaei, H. Namazi, A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel, Materials Science and Engineering: C, 73 (2017) 456–464.
  • Y. Zou, X. Chen, Y. Lan, J. Yang, B. Yang, J. Ma, M. Cheng, D. Wang, W. Xu, Find alternative for bovine and porcine gelatin: Study on physicochemical, rheological properties and water-holding capacity of chicken lungs gelatin by ultrasound treatment, Ultrason. Sonochem., 109 (2024) 107004.
  • X. Feng, H. Dai, L. Ma, Y. Fu, Y. Yu, H. Zhu, H. Wang, Y. Sun, H. Tan, Y. Zhang, Effect of drying methods on the solubility and amphiphilicity of room temperature soluble gelatin extracted by microwave-rapid freezing-thawing coupling, Food Chem., 351 (2021) 129226.
  • G.A. Digenis, T.B. Gold, V.P. Shah, Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance, J. Pharm. Sci., 83 (1994) 915–921.
  • G. Rath, T. Hussain, G. Chauhan, T. Garg, A.K. Goyal, Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds, Materials Science and Engineering C., 58 (2016) 242–253.
  • N.S. Said, N.K. Howell, N.M. Sarbon, A Review on Potential Use of Gelatin-based Film as Active and Smart Biodegradable Films for Food Packaging Application, Food Reviews International, 39 (2023) 1063–1085.
  • K.R. Stevens, N.J. Einerson, J.A. Burmania, W.J. Kao, In vivo biocompatibility of gelatin-based hydrogels and interpenetrating networks, J. Biomater. Sci. Polym. Ed., 13 (2002) 1353–1366.
  • D. Kim, J.U. Lee, G.H. Kim, Biomimetic gelatin/HA biocomposites with effective elastic properties and 3D-structural flexibility using a 3D-printing process, Addit Manuf, 36 (2020) 101616.
  • Y.C. Lin, H.Y. Wang, Y.C. Tang, W.R. Lin, C.L. Tseng, C.C. Hu, R.J. Chung, Enhancing wound healing and adhesion through dopamine-assisted gelatin-silica hybrid dressings, Int. J. Biol. Macromol., 258 (2024) 128845.
  • M. Martínez-Carmona, Y. Gun’Ko, M. Vallet-Regí, ZnO Nanostructures for Drug Delivery and Theranostic Applications, Nanomaterials (Basel), 8 (2018) 268.
  • T. Goto, S. Yin, T. Sato, T. Tanaka, Morphological control of zinc oxide and application to cosmetics, Int. J. Nanotechnol., 10 (2013) 48–56.
  • I. Kim, K. Viswanathan, G. Kasi, S. Thanakkasaranee, K. Sadeghi, J. Seo, ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges, Food Reviews International, 38 (2022) 537–565.
  • V. Puspasari, A. Ridhova, A. Hermawan, M.I. Amal, M.M. Khan, ZnO-based antimicrobial coatings for biomedical applications, Bioprocess and Biosyst. Eng., 45 (2022) 1421–1445.
  • R. Priyadarshi, B. Kumar, J.W. Rhim, Green and facile synthesis of carboxymethylcellulose/ZnO nanocomposite hydrogels crosslinked with Zn2+ ions, Int. J. Biol. Macromol., 162 (2020) 229–235.
  • A. Zafar, M.K. Khosa, A. Noor, S. Qayyum, M.J. Saif, Carboxymethyl Cellulose/Gelatin Hydrogel Films Loaded with Zinc Oxide Nanoparticles for Sustainable Food Packaging Applications, Polymers, 14 (2022) 5201.
  • E. Tamahkar, Bacterial cellulose/poly vinyl alcohol based wound dressings with sustained antibiotic delivery, Chemical Papers, 75 (2021) 3979–3987.
  • M. Rizwan, S.R. Gilani, A.I. Durrani, S. Naseem, Kinetic model studies of controlled nutrient release and swelling behavior of combo hydrogel using Acer platanoides cellulose, J. Taiwan. Inst. Chem. Eng., 131 (2022) 104137.
  • H. Namazi, M. Hasani, M. Yadollahi, Antibacterial oxidized starch/ZnO nanocomposite hydrogel: Synthesis and evaluation of its swelling behaviours in various pHs and salt solutions, Int. J. Biol. Macromol., 126 (2019) 578–584.
  • Z.I. Abdeen, A.F. El Farargy, N.A. Negm, Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation, J. Mol. Liq., 250 (2018) 335–343.
  • Z. Zare-Akbari, H. Farhadnejad, B. Furughi-Nia, S. Abedin, M. Yadollahi, M. Khorsand-Ghayeni, PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier, Int. J. Biol. Macromol., 93 (2016) 1317–1327.
  • W. Wang, J. Hu, R. Zhang, C. Yan, L. Cui, J. Zhu, A pH-responsive carboxymethyl cellulose/chitosan hydrogel for adsorption and desorption of anionic and cationic dyes, Cellulose, 28 (2021) 897–909.
  • Iman Gholamali, M. Asnaashariisfahani, E. Alipour, pH-Sensitive Nanocomposite Hydrogels Based on Carboxymethyl Chitosan/Poly(vinyl alcohol)/ZnO Nanoparticle with Drug Delivery Properties, Polym. Sci. Ser. A., 62 (2020) 502–514.
  • A. Tanwar, P. Date, D. Ottoor, ZnO NPs incorporated gelatin grafted polyacrylamide hydrogel nanocomposite for controlled release of ciprofloxacin, Colloid Interface Sci. Commun., 42 (2021) 100413.
  • A. Bora, D. Sarmah, M.A. Rather, M. Mandal, N. Karak, Nanocomposite of starch, gelatin and itaconic acid-based biodegradable hydrogel and ZnO/cellulose nanofiber: A pH-sensitive sustained drug delivery vehicle, Int. J. Biol. Macromol., 256 (2024) 128253.
  • M. Saidi, A. Dabbaghi, S. Rahmani, Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior, Polymer Bull., 77 (2020) 3989–4010.
  • A. Matei, I. Cernica, O. Cadar, C. Roman, V. Schiopu, Synthesis and characterization of ZnO - polymer nanocomposites, Int. J. Mater. Form., 1 (2008) 767–770.
  • I. Gholamali, M. Yadollahi, Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent, Int. J. Biol. Macromol., 160 (2020) 724–735.
  • L. Upadhyaya, J. Singh, V. Agarwal, A.C. Pandey, S.P. Verma, P. Das, R.P. Tewari, Efficient water soluble nanostructured ZnO grafted O-carboxymethyl chitosan/curcumin-nanocomposite for cancer therapy, Process Biochem., 4 (2015) 678–688.
  • Y. Zahedi, B. Fathi-Achachlouei, A.R. Yousefi, Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites, Int. J. Biol. Macromol., 108 (2018) 863–873.
  • S. Sahraee, B. Ghanbarzadeh, J.M. Milani, H. Hamishehkar, Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles, Food Bioproc. Tech., 10 (2017) 1441–1453.
  • X. Li, Z. Ren, R. Wang, L. Liu, J. Zhang, F. Ma, M.Z.H. Khan, D. Zhao, X. Liu, Characterization and antibacterial activity of edible films based on carboxymethyl cellulose, Dioscorea opposita mucilage, glycerol and ZnO nanoparticles, Food Chem., 349 (2021).
  • S. Shankar, X. Teng, G. Li, J.W. Rhim, Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films, Food Hydrocoll., 45 (2015) 264–271.
  • E. Duhoranimana, E. Karangwa, L. Lai, X. Xu, J. Yu, S. Xia, X. Zhang, B. Muhoza, I. Habinshuti, Effect of sodium carboxymethyl cellulose on complex coacervates formation with gelatin: Coacervates characterization, stabilization and formation mechanism, Food Hydrocoll., 69 (2017) 111–120.
  • B. Darbasizadeh, Y. Fatahi, B. Feyzi-barnaji, M. Arabi, H. Motasadizadeh, H. Farhadnejad, F. Moraffah, N. Rabiee, Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): Fabrication, characterization and in-vitro release and anti-bacterial properties, Int. J. Biol. Macromol., 141 (2019) 1137–1146.

Investigation of Swelling Capacity of Carboxymethyl Cellulose/Gelatin/Zinc Oxide Hydrogels

Year 2025, Volume: 53 Issue: 4, 11 - 19, 01.10.2025
https://doi.org/10.15671/hjbc.1547339

Abstract

Carboxymethyl cellulose (CMC)-based hydrogels had great potential in biomedical applications due to their biodegradability, biocompatibility, and solubility. Gelatin-based hydrogels were significant in the biomedical field for applications due to their high water retention capacity, biocompatibility, and biodegradability. Zinc oxide nanoparticles (ZnO) presenting high biocompatibility are widely used as an antimicrobial agent. CMC/Gelatin/ZnO hydrogels were developed with different ZnO nanoparticle ratios (0.05%, 0.1%) with further crosslinking using glutaraldehyde (1%, 2%, 2.5%, and 5%). The aim of this study was to investigate the effect of pH (pH: 5.5; 7.5) on the swelling behaviour of CMC/Gelatin/ZnO hydrogels. The increase in ZnO content resulted in the increase of swelling capacity. The highest swelling percentage (670%) occurred at pH 5.5 with the samples containing 0.1% ZnO. The lowest swelling ratio (467%) was observed at the pH 5.5 with the control group.

References

  • V. Gounden, M. Singh, Hydrogels and Wound Healing: Current and Future Prospects, Gels, 10 (2024) 43.
  • E.F. Demir, E. Özçalışkan, H. Karakaş, M. Uygun, D. Aktaş Uygun, S. Akgöl, A. Denizli, Synthesis and characterization of albumin imprinted polymeric hydrogel membranes for proteomic studies, J. Biomater. Sci. Polym. Ed., 29 (2018) 2218–2236.
  • B. Özkahraman, E. Tamahkar, N. İdil, A. Kılıç Suloglu, I. Perçin, Evaluation of hyaluronic acid nanoparticle embedded chitosan-gelatin hydrogels for antibiotic release, Drug Dev. Res., 82 (2021) 241–250.
  • S. Morariu, M. Bercea, L.M. Gradinaru, I. Rosca, M. Avadanei, Versatile poly(vinyl alcohol)/clay physical hydrogels with tailorable structure as potential candidates for wound healing applications, Mater. Sci. Eng. C. Mater. Biol. Appl., 109 (2020) 110395.
  • F.R. Diniz, R.C.A.P. Maia, L. Rannier, L.N. Andrade, M. V. Chaud, C.F. da Silva, C.B. Corrêa, R.L.C. de Albuquerque Junior, L.P. da Costa, S.R. Shin, S. Hassan, E. Sanchez-Lopez, E.B. Souto, P. Severino, Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing In Vivo, Nanomaterials (Basel), 10 (2020) 390.
  • C.M. Cleetus, F.A. Primo, G. Fregoso, N.L. Raveendran, J.C. Noveron, C.T. Spencer, C. V. Ramana, B. Joddar, Alginate Hydrogels with Embedded ZnO Nanoparticles for Wound Healing Therapy, Int. J. Nanomedicine, 15 (2020) 5097–5111.
  • Z. Abdollahi, E.N. Zare, F. Salimi, I. Goudarzi, F.R. Tay, P. Makvandi, Bioactive Carboxymethyl Starch-Based Hydrogels Decorated with CuO Nanoparticles: Antioxidant and Antimicrobial Properties and Accelerated Wound Healing In Vivo, Int. J. Mol. Sci., 22 (2021) 1–18.
  • F. Wahid, J.J. Yin, D.D. Xue, H. Xue, Y.S. Lu, C. Zhong, L.Q. Chu, Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels, Int. J. Biol. Macromol., 88 (2016) 273–279.
  • F. Naserian, A.S. Mesgar, Development of antibacterial and superabsorbent wound composite sponges containing carboxymethyl cellulose/gelatin/Cu-doped ZnO nanoparticles, Colloids Surf. B.Biointerfaces, 218 (2022) 112729.
  • R. Rakhshaei, H. Namazi, A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel, Materials Science and Engineering: C, 73 (2017) 456–464.
  • Y. Zou, X. Chen, Y. Lan, J. Yang, B. Yang, J. Ma, M. Cheng, D. Wang, W. Xu, Find alternative for bovine and porcine gelatin: Study on physicochemical, rheological properties and water-holding capacity of chicken lungs gelatin by ultrasound treatment, Ultrason. Sonochem., 109 (2024) 107004.
  • X. Feng, H. Dai, L. Ma, Y. Fu, Y. Yu, H. Zhu, H. Wang, Y. Sun, H. Tan, Y. Zhang, Effect of drying methods on the solubility and amphiphilicity of room temperature soluble gelatin extracted by microwave-rapid freezing-thawing coupling, Food Chem., 351 (2021) 129226.
  • G.A. Digenis, T.B. Gold, V.P. Shah, Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance, J. Pharm. Sci., 83 (1994) 915–921.
  • G. Rath, T. Hussain, G. Chauhan, T. Garg, A.K. Goyal, Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds, Materials Science and Engineering C., 58 (2016) 242–253.
  • N.S. Said, N.K. Howell, N.M. Sarbon, A Review on Potential Use of Gelatin-based Film as Active and Smart Biodegradable Films for Food Packaging Application, Food Reviews International, 39 (2023) 1063–1085.
  • K.R. Stevens, N.J. Einerson, J.A. Burmania, W.J. Kao, In vivo biocompatibility of gelatin-based hydrogels and interpenetrating networks, J. Biomater. Sci. Polym. Ed., 13 (2002) 1353–1366.
  • D. Kim, J.U. Lee, G.H. Kim, Biomimetic gelatin/HA biocomposites with effective elastic properties and 3D-structural flexibility using a 3D-printing process, Addit Manuf, 36 (2020) 101616.
  • Y.C. Lin, H.Y. Wang, Y.C. Tang, W.R. Lin, C.L. Tseng, C.C. Hu, R.J. Chung, Enhancing wound healing and adhesion through dopamine-assisted gelatin-silica hybrid dressings, Int. J. Biol. Macromol., 258 (2024) 128845.
  • M. Martínez-Carmona, Y. Gun’Ko, M. Vallet-Regí, ZnO Nanostructures for Drug Delivery and Theranostic Applications, Nanomaterials (Basel), 8 (2018) 268.
  • T. Goto, S. Yin, T. Sato, T. Tanaka, Morphological control of zinc oxide and application to cosmetics, Int. J. Nanotechnol., 10 (2013) 48–56.
  • I. Kim, K. Viswanathan, G. Kasi, S. Thanakkasaranee, K. Sadeghi, J. Seo, ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges, Food Reviews International, 38 (2022) 537–565.
  • V. Puspasari, A. Ridhova, A. Hermawan, M.I. Amal, M.M. Khan, ZnO-based antimicrobial coatings for biomedical applications, Bioprocess and Biosyst. Eng., 45 (2022) 1421–1445.
  • R. Priyadarshi, B. Kumar, J.W. Rhim, Green and facile synthesis of carboxymethylcellulose/ZnO nanocomposite hydrogels crosslinked with Zn2+ ions, Int. J. Biol. Macromol., 162 (2020) 229–235.
  • A. Zafar, M.K. Khosa, A. Noor, S. Qayyum, M.J. Saif, Carboxymethyl Cellulose/Gelatin Hydrogel Films Loaded with Zinc Oxide Nanoparticles for Sustainable Food Packaging Applications, Polymers, 14 (2022) 5201.
  • E. Tamahkar, Bacterial cellulose/poly vinyl alcohol based wound dressings with sustained antibiotic delivery, Chemical Papers, 75 (2021) 3979–3987.
  • M. Rizwan, S.R. Gilani, A.I. Durrani, S. Naseem, Kinetic model studies of controlled nutrient release and swelling behavior of combo hydrogel using Acer platanoides cellulose, J. Taiwan. Inst. Chem. Eng., 131 (2022) 104137.
  • H. Namazi, M. Hasani, M. Yadollahi, Antibacterial oxidized starch/ZnO nanocomposite hydrogel: Synthesis and evaluation of its swelling behaviours in various pHs and salt solutions, Int. J. Biol. Macromol., 126 (2019) 578–584.
  • Z.I. Abdeen, A.F. El Farargy, N.A. Negm, Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation, J. Mol. Liq., 250 (2018) 335–343.
  • Z. Zare-Akbari, H. Farhadnejad, B. Furughi-Nia, S. Abedin, M. Yadollahi, M. Khorsand-Ghayeni, PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier, Int. J. Biol. Macromol., 93 (2016) 1317–1327.
  • W. Wang, J. Hu, R. Zhang, C. Yan, L. Cui, J. Zhu, A pH-responsive carboxymethyl cellulose/chitosan hydrogel for adsorption and desorption of anionic and cationic dyes, Cellulose, 28 (2021) 897–909.
  • Iman Gholamali, M. Asnaashariisfahani, E. Alipour, pH-Sensitive Nanocomposite Hydrogels Based on Carboxymethyl Chitosan/Poly(vinyl alcohol)/ZnO Nanoparticle with Drug Delivery Properties, Polym. Sci. Ser. A., 62 (2020) 502–514.
  • A. Tanwar, P. Date, D. Ottoor, ZnO NPs incorporated gelatin grafted polyacrylamide hydrogel nanocomposite for controlled release of ciprofloxacin, Colloid Interface Sci. Commun., 42 (2021) 100413.
  • A. Bora, D. Sarmah, M.A. Rather, M. Mandal, N. Karak, Nanocomposite of starch, gelatin and itaconic acid-based biodegradable hydrogel and ZnO/cellulose nanofiber: A pH-sensitive sustained drug delivery vehicle, Int. J. Biol. Macromol., 256 (2024) 128253.
  • M. Saidi, A. Dabbaghi, S. Rahmani, Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior, Polymer Bull., 77 (2020) 3989–4010.
  • A. Matei, I. Cernica, O. Cadar, C. Roman, V. Schiopu, Synthesis and characterization of ZnO - polymer nanocomposites, Int. J. Mater. Form., 1 (2008) 767–770.
  • I. Gholamali, M. Yadollahi, Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent, Int. J. Biol. Macromol., 160 (2020) 724–735.
  • L. Upadhyaya, J. Singh, V. Agarwal, A.C. Pandey, S.P. Verma, P. Das, R.P. Tewari, Efficient water soluble nanostructured ZnO grafted O-carboxymethyl chitosan/curcumin-nanocomposite for cancer therapy, Process Biochem., 4 (2015) 678–688.
  • Y. Zahedi, B. Fathi-Achachlouei, A.R. Yousefi, Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites, Int. J. Biol. Macromol., 108 (2018) 863–873.
  • S. Sahraee, B. Ghanbarzadeh, J.M. Milani, H. Hamishehkar, Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles, Food Bioproc. Tech., 10 (2017) 1441–1453.
  • X. Li, Z. Ren, R. Wang, L. Liu, J. Zhang, F. Ma, M.Z.H. Khan, D. Zhao, X. Liu, Characterization and antibacterial activity of edible films based on carboxymethyl cellulose, Dioscorea opposita mucilage, glycerol and ZnO nanoparticles, Food Chem., 349 (2021).
  • S. Shankar, X. Teng, G. Li, J.W. Rhim, Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films, Food Hydrocoll., 45 (2015) 264–271.
  • E. Duhoranimana, E. Karangwa, L. Lai, X. Xu, J. Yu, S. Xia, X. Zhang, B. Muhoza, I. Habinshuti, Effect of sodium carboxymethyl cellulose on complex coacervates formation with gelatin: Coacervates characterization, stabilization and formation mechanism, Food Hydrocoll., 69 (2017) 111–120.
  • B. Darbasizadeh, Y. Fatahi, B. Feyzi-barnaji, M. Arabi, H. Motasadizadeh, H. Farhadnejad, F. Moraffah, N. Rabiee, Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): Fabrication, characterization and in-vitro release and anti-bacterial properties, Int. J. Biol. Macromol., 141 (2019) 1137–1146.
There are 43 citations in total.

Details

Primary Language English
Subjects Physical Properties of Materials
Journal Section Research Article
Authors

Ezgi Arıkan 0009-0008-3325-736X

Ecem Çiçek Kocabaş 0000-0003-3514-5149

Batuhan Nuray 0009-0008-1345-3363

Aleyna Tuğçe Efecan 0009-0005-6703-076X

Zeynep Ciğeroğlu 0000-0001-5625-6222

Emel Tamahkar Irmak 0000-0002-5913-8333

Publication Date October 1, 2025
Submission Date September 10, 2024
Acceptance Date December 18, 2024
Published in Issue Year 2025 Volume: 53 Issue: 4

Cite

APA Arıkan, E., Çiçek Kocabaş, E., Nuray, B., … Efecan, A. T. (2025). Investigation of Swelling Capacity of Carboxymethyl Cellulose/Gelatin/Zinc Oxide Hydrogels. Hacettepe Journal of Biology and Chemistry, 53(4), 11-19. https://doi.org/10.15671/hjbc.1547339
AMA Arıkan E, Çiçek Kocabaş E, Nuray B, Efecan AT, Ciğeroğlu Z, Tamahkar Irmak E. Investigation of Swelling Capacity of Carboxymethyl Cellulose/Gelatin/Zinc Oxide Hydrogels. HJBC. October 2025;53(4):11-19. doi:10.15671/hjbc.1547339
Chicago Arıkan, Ezgi, Ecem Çiçek Kocabaş, Batuhan Nuray, Aleyna Tuğçe Efecan, Zeynep Ciğeroğlu, and Emel Tamahkar Irmak. “Investigation of Swelling Capacity of Carboxymethyl Cellulose Gelatin Zinc Oxide Hydrogels”. Hacettepe Journal of Biology and Chemistry 53, no. 4 (October 2025): 11-19. https://doi.org/10.15671/hjbc.1547339.
EndNote Arıkan E, Çiçek Kocabaş E, Nuray B, Efecan AT, Ciğeroğlu Z, Tamahkar Irmak E (October 1, 2025) Investigation of Swelling Capacity of Carboxymethyl Cellulose/Gelatin/Zinc Oxide Hydrogels. Hacettepe Journal of Biology and Chemistry 53 4 11–19.
IEEE E. Arıkan, E. Çiçek Kocabaş, B. Nuray, A. T. Efecan, Z. Ciğeroğlu, and E. Tamahkar Irmak, “Investigation of Swelling Capacity of Carboxymethyl Cellulose/Gelatin/Zinc Oxide Hydrogels”, HJBC, vol. 53, no. 4, pp. 11–19, 2025, doi: 10.15671/hjbc.1547339.
ISNAD Arıkan, Ezgi et al. “Investigation of Swelling Capacity of Carboxymethyl Cellulose Gelatin Zinc Oxide Hydrogels”. Hacettepe Journal of Biology and Chemistry 53/4 (October2025), 11-19. https://doi.org/10.15671/hjbc.1547339.
JAMA Arıkan E, Çiçek Kocabaş E, Nuray B, Efecan AT, Ciğeroğlu Z, Tamahkar Irmak E. Investigation of Swelling Capacity of Carboxymethyl Cellulose/Gelatin/Zinc Oxide Hydrogels. HJBC. 2025;53:11–19.
MLA Arıkan, Ezgi et al. “Investigation of Swelling Capacity of Carboxymethyl Cellulose Gelatin Zinc Oxide Hydrogels”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 4, 2025, pp. 11-19, doi:10.15671/hjbc.1547339.
Vancouver Arıkan E, Çiçek Kocabaş E, Nuray B, Efecan AT, Ciğeroğlu Z, Tamahkar Irmak E. Investigation of Swelling Capacity of Carboxymethyl Cellulose/Gelatin/Zinc Oxide Hydrogels. HJBC. 2025;53(4):11-9.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc