Ćirić contraction with graphical structure of bipolar metric spaces and related fixed point theorems
Year 2024,
, 1588 - 1606, 28.12.2024
Mudasir Younıs
,
Ali Mutlu
,
Haroon Ahmad
Abstract
We present the novel concept of graphical bipolar metric-type space in this article, which combines the notions of graph theory with fixed point theory. We prove that every bipolar metric space is a graphical bipolar metric space but the converse is not true in general. Various concepts like covariant mapping, contravariant mapping, and Cauchy bisequence are also discussed within the context of graphical bipolar metric-type spaces. Furthermore, in this study, we show that fixed point results exist in graphical structures of bipolar metric spaces and a series of examples are provided to support the main results within the realm of the graph structure.
Supporting Institution
No
References
- [1] H. Ahmad, M. Younis and M. E. Köksal, Double controlled partial metric type spaces
and convergence results, J. Math. 2021, 7008737, 2021.
- [2] N. Chuensupantharat, P. Kumam, V. Chauhan, D. Singh and R. Menon, Graphic
contraction mappings via graphical b-metric spaces with applications, Bull. Malays.
Math. Sci. Soc. 42, 3149–3165, 2019.
- [3] L. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math.
Soc. 45, 267–273, 1974.
- [4] S. Çetin and U. Gürdal, Characterization of bipolar ultrametric spaces and fixed point
theorems, Hacet. J. Math. Stat. 52 (1), 185-196, 2023.
- [5] A.K. Dubey, U. Mishra and W.H. Lim, Some new fixed point theorems for generalized
contraction involving rational expressions in complex valued b−metric spaces,
Nonlinear Funct. Anal. Appl. 24 (3), 477–483, 2019.
- [6] R. George, S. Radenovic, K.P. Reshma and S. Shukla, Rectangular b-metric spaces
and contraction principle, J. Nonlinear Sci. Appl. 8 (6), 1005–1013, 2015.
- [7] A. F. de Hierro and N. Shahzad, From graphical metric spaces to fixed point theory
in binary related distance spaces, Filomat, 31, 3209–3231, 2017.
- [8] N. Hussain, M. Arshad and A. Shoaib, Common fixed point results for $\alpha $-$\psi $-
contractions on a metric space endowed with graph, J. Inequal. Appl. (1), 136, 2014.
- [9] N. Hussain, J. Ahmad and M.A. Kutbi MA, Fixed point theorems for generalized
Mizoguchi-Takahashi graphic contractions, J. Funct. Spaces 2016, 6514920, 2016.
- [10] J. Jachymski, The contraction principle for mappings on a metric space with a graph,
Proc. Amer. Math. Soc. 136, 1359–1373, 2008.
- [11] G. N. V. Kishore, R. P. Agarwal, B. Srinuvasa Rao and R. V. N. Srinuvasa Rao,
Caristi type cyclic contraction and common fixed point theorems in bipolar metric
spaces with applications, Fixed Point Theory Appl. 2018, 21, 2018.
- [12] Z. Mostefaoui, M. Bousselsal and J.K. Kim, Some results in fixed point theory concerning
rectangular b−metric spaces, Nonlinear Funct. Anal. Appl., 24 (1), 49–59,
2019.
- [13] A. Mutlu and U. Gürdal, Bipolar metric spaces and some fixed point theorems, J.
Nonlinear Sci. Appl. 9 (9), 5362-5373, 2016.
- [14] A. Mutlu, K. Ozkan and U. Gurdal, Coupled fixed point theorems on bipolar metric
spaces, European journal of pure and applied Mathematics, 10 (4), 655-667, 2017.
- [15] A. Mutlu, K. Ozkan and U. Gurdal, Fixed point theorems for multivaled mappings on
bipolar metric spaces, Fixed Point Theory, 21 (1), 271-280, 2020.
- [16] S. Radenović, K. Zoto, N. Dedović, V. Šešum-Cavic and A.H. Ansari, Bhaskar-Guo-
Lakshmikantam-Ćirić type results via new functions with applications to integral equations,
Applied Mathematics and Computation, 357,75–87, 2019.
- [17] S. Radenović, T. Došenović, T. Aleksić-Lampert and Z. Golubović, A note on some
recent fixed point results for cyclic contractions in b-metric spaces and an application
to integral equations, Appl. Math. Comput. 273, 155–164, 2016.
- [18] N. Saleem, H. Ahmad, H. Aydi and Y. Ulrich Gaba, On Some Coincidence Best
Proximity Point Results, Journal of Mathematics, 2021, 8005469, 2021.
- [19] S. Shukla, S. Radenović and C. Vetro, Graphical metric space: a generalized setting
in fixed point theory, Revista de la Real Academia de Ciencias Exactas, Fisicas y
Naturales. Serie A. Matematicas, 111, 641–655, 2017.
- [20] D. Singh, V. Chauhan and I. Altun, Common fixed point of a power graphic $(F, \psi)$-
contraction pair on partial b−metric spaces with application, Nonlinear analysis: Modelling
and control, 22 (5), 662–678, 2017.
- [21] D. Singh, V, Joshi and J.K. Kim, Existence of solution to Bessel-type boundary
value problem Viam G–l cyclic F−contractive mapping with graphical verification,
Nonlinear Funct. Anal. Appl. 23 (2), 205–224, 2018.
- [22] M. Younis, D. Singh and A. Goyal, A novel approach of graphical rectangular b−metric
spaces with an application to the vibrations of a vertical heavy hanging cable, J. Fixed
Point Theory Appl. 21, 33, 2019.
- [23] M. Younis and D. Bahuguna, A unique approach to graph-based metric spaces with
an application to rocket ascension, Comp. Appl. Math. 42, 44, 2023.
- [24] M. Younis, D. Singh, M. Asadi and V. Joshi, Results on contractions of Reich type
in graphical b−metric spaces with applications, Filomat, 33 (17), 5723–5735, 2019.
- [25] M. Younis, D. Singh, D. Gopal, A. Goyal and M. S. Rathore, On applications of
generalized F−contraction to differential equations, Nonlinear Funct. Anal. Appl. 24
(1), 155–174, 2019.
- [26] M. Younis, D. Singh, I. Altun and V. Chauhan, Graphical structure of extended
b−metric spaces: an application to the transverse oscillations of a homogeneous bar,
Int. J. Nonlinear Sci. Numer. Simul. 23 (7-8), 1239–1252, 2021.
- [27] G. N. V. Kishore, K. P. R. Rao, H. Isık, B. Srinuvasa Rao and A. Sombabu, Covarian
mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear
Anal. Appl. 12 (1), 1-15, 2021.
Year 2024,
, 1588 - 1606, 28.12.2024
Mudasir Younıs
,
Ali Mutlu
,
Haroon Ahmad
References
- [1] H. Ahmad, M. Younis and M. E. Köksal, Double controlled partial metric type spaces
and convergence results, J. Math. 2021, 7008737, 2021.
- [2] N. Chuensupantharat, P. Kumam, V. Chauhan, D. Singh and R. Menon, Graphic
contraction mappings via graphical b-metric spaces with applications, Bull. Malays.
Math. Sci. Soc. 42, 3149–3165, 2019.
- [3] L. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math.
Soc. 45, 267–273, 1974.
- [4] S. Çetin and U. Gürdal, Characterization of bipolar ultrametric spaces and fixed point
theorems, Hacet. J. Math. Stat. 52 (1), 185-196, 2023.
- [5] A.K. Dubey, U. Mishra and W.H. Lim, Some new fixed point theorems for generalized
contraction involving rational expressions in complex valued b−metric spaces,
Nonlinear Funct. Anal. Appl. 24 (3), 477–483, 2019.
- [6] R. George, S. Radenovic, K.P. Reshma and S. Shukla, Rectangular b-metric spaces
and contraction principle, J. Nonlinear Sci. Appl. 8 (6), 1005–1013, 2015.
- [7] A. F. de Hierro and N. Shahzad, From graphical metric spaces to fixed point theory
in binary related distance spaces, Filomat, 31, 3209–3231, 2017.
- [8] N. Hussain, M. Arshad and A. Shoaib, Common fixed point results for $\alpha $-$\psi $-
contractions on a metric space endowed with graph, J. Inequal. Appl. (1), 136, 2014.
- [9] N. Hussain, J. Ahmad and M.A. Kutbi MA, Fixed point theorems for generalized
Mizoguchi-Takahashi graphic contractions, J. Funct. Spaces 2016, 6514920, 2016.
- [10] J. Jachymski, The contraction principle for mappings on a metric space with a graph,
Proc. Amer. Math. Soc. 136, 1359–1373, 2008.
- [11] G. N. V. Kishore, R. P. Agarwal, B. Srinuvasa Rao and R. V. N. Srinuvasa Rao,
Caristi type cyclic contraction and common fixed point theorems in bipolar metric
spaces with applications, Fixed Point Theory Appl. 2018, 21, 2018.
- [12] Z. Mostefaoui, M. Bousselsal and J.K. Kim, Some results in fixed point theory concerning
rectangular b−metric spaces, Nonlinear Funct. Anal. Appl., 24 (1), 49–59,
2019.
- [13] A. Mutlu and U. Gürdal, Bipolar metric spaces and some fixed point theorems, J.
Nonlinear Sci. Appl. 9 (9), 5362-5373, 2016.
- [14] A. Mutlu, K. Ozkan and U. Gurdal, Coupled fixed point theorems on bipolar metric
spaces, European journal of pure and applied Mathematics, 10 (4), 655-667, 2017.
- [15] A. Mutlu, K. Ozkan and U. Gurdal, Fixed point theorems for multivaled mappings on
bipolar metric spaces, Fixed Point Theory, 21 (1), 271-280, 2020.
- [16] S. Radenović, K. Zoto, N. Dedović, V. Šešum-Cavic and A.H. Ansari, Bhaskar-Guo-
Lakshmikantam-Ćirić type results via new functions with applications to integral equations,
Applied Mathematics and Computation, 357,75–87, 2019.
- [17] S. Radenović, T. Došenović, T. Aleksić-Lampert and Z. Golubović, A note on some
recent fixed point results for cyclic contractions in b-metric spaces and an application
to integral equations, Appl. Math. Comput. 273, 155–164, 2016.
- [18] N. Saleem, H. Ahmad, H. Aydi and Y. Ulrich Gaba, On Some Coincidence Best
Proximity Point Results, Journal of Mathematics, 2021, 8005469, 2021.
- [19] S. Shukla, S. Radenović and C. Vetro, Graphical metric space: a generalized setting
in fixed point theory, Revista de la Real Academia de Ciencias Exactas, Fisicas y
Naturales. Serie A. Matematicas, 111, 641–655, 2017.
- [20] D. Singh, V. Chauhan and I. Altun, Common fixed point of a power graphic $(F, \psi)$-
contraction pair on partial b−metric spaces with application, Nonlinear analysis: Modelling
and control, 22 (5), 662–678, 2017.
- [21] D. Singh, V, Joshi and J.K. Kim, Existence of solution to Bessel-type boundary
value problem Viam G–l cyclic F−contractive mapping with graphical verification,
Nonlinear Funct. Anal. Appl. 23 (2), 205–224, 2018.
- [22] M. Younis, D. Singh and A. Goyal, A novel approach of graphical rectangular b−metric
spaces with an application to the vibrations of a vertical heavy hanging cable, J. Fixed
Point Theory Appl. 21, 33, 2019.
- [23] M. Younis and D. Bahuguna, A unique approach to graph-based metric spaces with
an application to rocket ascension, Comp. Appl. Math. 42, 44, 2023.
- [24] M. Younis, D. Singh, M. Asadi and V. Joshi, Results on contractions of Reich type
in graphical b−metric spaces with applications, Filomat, 33 (17), 5723–5735, 2019.
- [25] M. Younis, D. Singh, D. Gopal, A. Goyal and M. S. Rathore, On applications of
generalized F−contraction to differential equations, Nonlinear Funct. Anal. Appl. 24
(1), 155–174, 2019.
- [26] M. Younis, D. Singh, I. Altun and V. Chauhan, Graphical structure of extended
b−metric spaces: an application to the transverse oscillations of a homogeneous bar,
Int. J. Nonlinear Sci. Numer. Simul. 23 (7-8), 1239–1252, 2021.
- [27] G. N. V. Kishore, K. P. R. Rao, H. Isık, B. Srinuvasa Rao and A. Sombabu, Covarian
mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear
Anal. Appl. 12 (1), 1-15, 2021.