Research Article
BibTex RIS Cite

Deferred statistical order convergence in Riesz spaces

Year 2024, , 1368 - 1377, 15.10.2024
https://doi.org/10.15672/hujms.1322652

Abstract

In recent years, researchers have focused on exploring different forms of statistical convergence in Riesz spaces, such as statistical order convergence and statistical unbounded order convergence. This study aims to present the concept of deferred statistical convergence within Riesz spaces, specifically concerning its relationship with order convergence. Furthermore, we delve into the interconnections between deferred statistical order convergence and various other types of statistical convergence. Moreover, we explore in depth the intricate connections between deferred statistical order convergence and other notable forms of statistical convergence. We provide valuable insights into the broader framework of statistical convergence theory in Riesz spaces.

References

  • [1] R.P. Agnew, On deferred Cesàro means, Anna. Math. 33 (3), 413-421, 1932.
  • [2] C.D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs Centrum, 2003.
  • [3] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • [4] A. Aydın, Multiplicative order convergence in f-algebras, Hacet. J. Math. Stat. 49 (3), 998-1005, 2020.
  • [5] A. Aydın, The statistically unbounded $\tau$-convergence on locally solid vector lattices, Turk. J. Math. 44 (3), 949-956, 2020.
  • [6] A. Aydın, The statistical multiplicative order convergence in vector lattice algebras, Fact. Univ. Ser.: Math. Infor. 36 (2), 409-417, 2021.
  • [7] A. Aydın, M. Et, Statistically multiplicative convergence on locally solid Riesz algebras, Turk. J. Math. 45 (4), 1506-1516, 2021.
  • [8] A. Aydın, E. Emelyanov and S. G. Gorokhova, Full lattice convergence on Riesz spaces, Indagat. Math. 32 (3), 658-690, 2021.
  • [9] Z. Ercan, A characterization of u-uniformly completeness of Riesz spaces in terms of statistical u-uniformly pre-completeness, Demons. Math. 42 (2), 383-387, 2009.
  • [10] M. Et, P. Baliarsingh, H. . Kandemir and M. Küçükaslan, On $\mu$-deferred statistical convergence and strongly deferred summable functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 115(1), Paper No. 34, 14 pp, 2021.
  • [11] M. Et, M. Cinar and H. S. Kandemir, Deferred statistical convergence of order α in metric spaces, AIMS Math. 5, Paper No. 4, 3731-3740, 2020.
  • [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244, 1951.
  • [13] J. Fridy, On statistical convergence, Analysis 5 (4), 301-313, 1985.
  • [14] M. Küçükaslan and M. Yilmazturk, On deferred statistical convergence of sequences, Kyung. Math. J. 56 (2), 357-366, 2016.
  • [15] M. Küçükaslan, U. Deer and U. Dovgoshey, On statistical convergence of metric valued sequences, Ukrain. Math. J. 66 (5), 796-805, 2014.
  • [16] W.A.J. Luxemburg and A.C. Zaanen, Vector Lattices I, North-Holland Pub. Co., Amsterdam, 1971.
  • [17] I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambr. Phil. Soc. 104 (1), 141-145, 1988.
  • [18] F. Riesz, Sur la Décomposition des Opérations Fonctionelles Linéaires. Bologna, Atti Del Congresso Internazionale Dei Mathematics Press, 1928.
  • [19] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 73-74, 1951.
  • [20] B.C. Tripathy, On statistically convergent sequences, Bul. Calcut. Math. Soc. 90, 259262, 1998.
  • [21] A.C. Zaanen, Riesz Spaces II, North-Holland Publishing C., Amsterdam, 1983.
Year 2024, , 1368 - 1377, 15.10.2024
https://doi.org/10.15672/hujms.1322652

Abstract

References

  • [1] R.P. Agnew, On deferred Cesàro means, Anna. Math. 33 (3), 413-421, 1932.
  • [2] C.D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs Centrum, 2003.
  • [3] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • [4] A. Aydın, Multiplicative order convergence in f-algebras, Hacet. J. Math. Stat. 49 (3), 998-1005, 2020.
  • [5] A. Aydın, The statistically unbounded $\tau$-convergence on locally solid vector lattices, Turk. J. Math. 44 (3), 949-956, 2020.
  • [6] A. Aydın, The statistical multiplicative order convergence in vector lattice algebras, Fact. Univ. Ser.: Math. Infor. 36 (2), 409-417, 2021.
  • [7] A. Aydın, M. Et, Statistically multiplicative convergence on locally solid Riesz algebras, Turk. J. Math. 45 (4), 1506-1516, 2021.
  • [8] A. Aydın, E. Emelyanov and S. G. Gorokhova, Full lattice convergence on Riesz spaces, Indagat. Math. 32 (3), 658-690, 2021.
  • [9] Z. Ercan, A characterization of u-uniformly completeness of Riesz spaces in terms of statistical u-uniformly pre-completeness, Demons. Math. 42 (2), 383-387, 2009.
  • [10] M. Et, P. Baliarsingh, H. . Kandemir and M. Küçükaslan, On $\mu$-deferred statistical convergence and strongly deferred summable functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 115(1), Paper No. 34, 14 pp, 2021.
  • [11] M. Et, M. Cinar and H. S. Kandemir, Deferred statistical convergence of order α in metric spaces, AIMS Math. 5, Paper No. 4, 3731-3740, 2020.
  • [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244, 1951.
  • [13] J. Fridy, On statistical convergence, Analysis 5 (4), 301-313, 1985.
  • [14] M. Küçükaslan and M. Yilmazturk, On deferred statistical convergence of sequences, Kyung. Math. J. 56 (2), 357-366, 2016.
  • [15] M. Küçükaslan, U. Deer and U. Dovgoshey, On statistical convergence of metric valued sequences, Ukrain. Math. J. 66 (5), 796-805, 2014.
  • [16] W.A.J. Luxemburg and A.C. Zaanen, Vector Lattices I, North-Holland Pub. Co., Amsterdam, 1971.
  • [17] I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambr. Phil. Soc. 104 (1), 141-145, 1988.
  • [18] F. Riesz, Sur la Décomposition des Opérations Fonctionelles Linéaires. Bologna, Atti Del Congresso Internazionale Dei Mathematics Press, 1928.
  • [19] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 73-74, 1951.
  • [20] B.C. Tripathy, On statistically convergent sequences, Bul. Calcut. Math. Soc. 90, 259262, 1998.
  • [21] A.C. Zaanen, Riesz Spaces II, North-Holland Publishing C., Amsterdam, 1983.
There are 21 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Mathematics
Authors

Mehmet Küçükaslan 0000-0002-3183-3123

Abdullah Aydın 0000-0002-0769-5752

Early Pub Date January 10, 2024
Publication Date October 15, 2024
Published in Issue Year 2024

Cite

APA Küçükaslan, M., & Aydın, A. (2024). Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics, 53(5), 1368-1377. https://doi.org/10.15672/hujms.1322652
AMA Küçükaslan M, Aydın A. Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics. October 2024;53(5):1368-1377. doi:10.15672/hujms.1322652
Chicago Küçükaslan, Mehmet, and Abdullah Aydın. “Deferred Statistical Order Convergence in Riesz Spaces”. Hacettepe Journal of Mathematics and Statistics 53, no. 5 (October 2024): 1368-77. https://doi.org/10.15672/hujms.1322652.
EndNote Küçükaslan M, Aydın A (October 1, 2024) Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics 53 5 1368–1377.
IEEE M. Küçükaslan and A. Aydın, “Deferred statistical order convergence in Riesz spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, pp. 1368–1377, 2024, doi: 10.15672/hujms.1322652.
ISNAD Küçükaslan, Mehmet - Aydın, Abdullah. “Deferred Statistical Order Convergence in Riesz Spaces”. Hacettepe Journal of Mathematics and Statistics 53/5 (October 2024), 1368-1377. https://doi.org/10.15672/hujms.1322652.
JAMA Küçükaslan M, Aydın A. Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53:1368–1377.
MLA Küçükaslan, Mehmet and Abdullah Aydın. “Deferred Statistical Order Convergence in Riesz Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, 2024, pp. 1368-77, doi:10.15672/hujms.1322652.
Vancouver Küçükaslan M, Aydın A. Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53(5):1368-77.