[1] Y. Abu Muhanna, L. Li, and S. Ponnusamy, Extremal problems on the class of convex
functions of order -1/2, Arch. Math. (Basel) 103 (6), 461–471, 2014.
[2] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions,
in: Inequal. Theory and Appl. 6, 1–7, editors: Y. J. Cho, J.K. Kim and S.S. Dragomir,
2010.
[3] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic
functions, Appl. Math. Lett. 26 (1), 103–107, 2013.
[4] D. Bansal, S. Haharana, and J.K. Prajapat, Third order Hankel determinant for
certain univalent functions, J. Korean Math. Soc. 52, 1139–1148, 2015.
[5] S.V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univelent
mappings and hypergeometric mappings, Rocky Mt. J. Math. 44, 753–777, 2014.
[6] D. Bshouty, S.S. Joshi, and S.B. Joshi, On close-to-convex harmonic mappings, Complex
Var. Elliptic Equ. 58, 1195–1199, 2013.
[7] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings,
Complex Appl. Oper. Theory 5, 767–774, 2011.
[8] D.G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69, 362–
366, 1963.
[9] J. Chen, A. Rasila, and X. Wang, Coefficient estimates and radii problems for certain
classes of polyharmonic mappings, Complex Var. Elliptic Equ. 60, 354–371, 2015.
[10] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn.
Ser. A. I Math. 9, 3–25, 1984.
[11] P. Dienes, The Taylor Series, Dover, New York, 1957.
[12] P.L. Duren, Univalent functions, Springer Verlag, New York Inc., 1983.
[13] P.L. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge,
2004.
[14] A. Edrei, Sur les déterminants récurrents et les singularités d’une fonction donnée
par son développement de Taylor, Compos. Math. 7, 20–88, 1940.
[15] M. Fekete and G. Szegő, Eine bemerkung über ungerade schlichte functions, J. London
Math. Soc. 8, 85–89, 1933.
[16] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J.
Math. Anal. 4 (52), 2573–2585, 2010.
[17] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc.
Lond. Math. Soc. 18 (3), 77–94, 1968.
[18] A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose
derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2), Art. 50, 5 pp,
2006.
[19] A. Janteng, S.A. Halim, and M. Darus, Hankel determinant for starlike and convex
functions, Int. J. Math. Anal. 1 (13), 619–625, 2007.
[20] D. Kalaj, S. Ponnusamy, and M. Vuorinen, Radius of close-to-convexity and fully
starlikeness of harmonic mappings, Complex Var. Elliptic Equ. 59, 539–552, 2014.
[21] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer.
Math. Soc. 101, 89–95, 1987.
[22] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math.
49, 420–433, 1987.
[23] S.K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel
determinant of certain univalent functions, J. Inequal. Appl. 2013, Art. 281, 17 pp,
2013.
[24] R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex
function, Proc. Amer. Math. Soc. 85, 225–230, 1982.
[25] R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with
derivatives in P, Proc. Am. Math. Soc. 87, 251–257, 1983.
[26] A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Am.
Math. Soc. 21, 545–552, 1969.
[27] P.T. Mocanu, Sufficient conditions of univalence for complex functions in the class
C1, Rev. Anal. Numér. Théor. Approx. 10, 75–79, 1981.
[28] P.T. Mocanu, Injectivity conditions in the complex plane, Complex Appl. Oper. Theory
5, 759–766, 2011.
[29] S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings,
Complex Var. Elliptic Equ. 59, 204–216, 2014.
[30] H. Orhan and P. Zaprawa, Third Hankel determinants for starlike and convex functions,
Bull. Korean Math. Soc. 55, 165–173, 2018.
[31] C. Pommerenke, On the coefficients and Hankel determinant of univalent functions,
J. Lond. Math. Soc. 41, 111–122, 1966.
[32] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika
14, 108–112, 1967.
[33] S. Ponnusamy and A. Rasila, Planar harmonic and quasiregular mappings, in: Topics
in modern function theory, Ramanujan Math. Soc. Lect. Notes Ser. 19, 267–333,
Ramanujan Math. Soc., Mysore, 2013.
[34] S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, Comput.
Methods Funct. Theory 12, 669–685, 2012.
[35] S. Ponnusamy and A. Sairam Kaliraj, Constants and characterization for certain
classes of univalent harmonic mappings, Mediterr. J. Math. 12, 647–665, 2015.
[36] M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for a class of
analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013, Art.
412, 8 pp., 2013.
[37] T.J. Suffridge, Some special classes of conformal mappings, in: Handbook of complex
analysis: geometric function theory (Edited by Kühnau), 2, 309–338, Elsevier,
Amsterdam, 2005.
[38] Y. Sun, Y. Jiang, and A. Rasila, On a subclass of close-to-convex harmonic mappings,
Complex Var. Elliptic Equ. 61, 1627–1643, 2016.
[39] D. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy, Third Hankel determinant
for bounded turning functions of order alpha, J. Nigerian Math. Soc. 34, 121–127,
2015.
[40] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions,
Mediterr. J. Math. 14 (1), Art. 19, 10 pp., 2017.
On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings
In this paper, we obtain the upper bounds to the third Hankel determinants for convex functions of order $\alpha$ and bounded turning functions of order $\alpha$. Furthermore, several relevant results on a new subclass of close-to-convex harmonic mappings are obtained. Connections of the results presented here to those that can be found in the literature are also discussed.
[1] Y. Abu Muhanna, L. Li, and S. Ponnusamy, Extremal problems on the class of convex
functions of order -1/2, Arch. Math. (Basel) 103 (6), 461–471, 2014.
[2] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions,
in: Inequal. Theory and Appl. 6, 1–7, editors: Y. J. Cho, J.K. Kim and S.S. Dragomir,
2010.
[3] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic
functions, Appl. Math. Lett. 26 (1), 103–107, 2013.
[4] D. Bansal, S. Haharana, and J.K. Prajapat, Third order Hankel determinant for
certain univalent functions, J. Korean Math. Soc. 52, 1139–1148, 2015.
[5] S.V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univelent
mappings and hypergeometric mappings, Rocky Mt. J. Math. 44, 753–777, 2014.
[6] D. Bshouty, S.S. Joshi, and S.B. Joshi, On close-to-convex harmonic mappings, Complex
Var. Elliptic Equ. 58, 1195–1199, 2013.
[7] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings,
Complex Appl. Oper. Theory 5, 767–774, 2011.
[8] D.G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69, 362–
366, 1963.
[9] J. Chen, A. Rasila, and X. Wang, Coefficient estimates and radii problems for certain
classes of polyharmonic mappings, Complex Var. Elliptic Equ. 60, 354–371, 2015.
[10] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn.
Ser. A. I Math. 9, 3–25, 1984.
[11] P. Dienes, The Taylor Series, Dover, New York, 1957.
[12] P.L. Duren, Univalent functions, Springer Verlag, New York Inc., 1983.
[13] P.L. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge,
2004.
[14] A. Edrei, Sur les déterminants récurrents et les singularités d’une fonction donnée
par son développement de Taylor, Compos. Math. 7, 20–88, 1940.
[15] M. Fekete and G. Szegő, Eine bemerkung über ungerade schlichte functions, J. London
Math. Soc. 8, 85–89, 1933.
[16] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J.
Math. Anal. 4 (52), 2573–2585, 2010.
[17] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc.
Lond. Math. Soc. 18 (3), 77–94, 1968.
[18] A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose
derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2), Art. 50, 5 pp,
2006.
[19] A. Janteng, S.A. Halim, and M. Darus, Hankel determinant for starlike and convex
functions, Int. J. Math. Anal. 1 (13), 619–625, 2007.
[20] D. Kalaj, S. Ponnusamy, and M. Vuorinen, Radius of close-to-convexity and fully
starlikeness of harmonic mappings, Complex Var. Elliptic Equ. 59, 539–552, 2014.
[21] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer.
Math. Soc. 101, 89–95, 1987.
[22] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math.
49, 420–433, 1987.
[23] S.K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel
determinant of certain univalent functions, J. Inequal. Appl. 2013, Art. 281, 17 pp,
2013.
[24] R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex
function, Proc. Amer. Math. Soc. 85, 225–230, 1982.
[25] R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with
derivatives in P, Proc. Am. Math. Soc. 87, 251–257, 1983.
[26] A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Am.
Math. Soc. 21, 545–552, 1969.
[27] P.T. Mocanu, Sufficient conditions of univalence for complex functions in the class
C1, Rev. Anal. Numér. Théor. Approx. 10, 75–79, 1981.
[28] P.T. Mocanu, Injectivity conditions in the complex plane, Complex Appl. Oper. Theory
5, 759–766, 2011.
[29] S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings,
Complex Var. Elliptic Equ. 59, 204–216, 2014.
[30] H. Orhan and P. Zaprawa, Third Hankel determinants for starlike and convex functions,
Bull. Korean Math. Soc. 55, 165–173, 2018.
[31] C. Pommerenke, On the coefficients and Hankel determinant of univalent functions,
J. Lond. Math. Soc. 41, 111–122, 1966.
[32] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika
14, 108–112, 1967.
[33] S. Ponnusamy and A. Rasila, Planar harmonic and quasiregular mappings, in: Topics
in modern function theory, Ramanujan Math. Soc. Lect. Notes Ser. 19, 267–333,
Ramanujan Math. Soc., Mysore, 2013.
[34] S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, Comput.
Methods Funct. Theory 12, 669–685, 2012.
[35] S. Ponnusamy and A. Sairam Kaliraj, Constants and characterization for certain
classes of univalent harmonic mappings, Mediterr. J. Math. 12, 647–665, 2015.
[36] M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for a class of
analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013, Art.
412, 8 pp., 2013.
[37] T.J. Suffridge, Some special classes of conformal mappings, in: Handbook of complex
analysis: geometric function theory (Edited by Kühnau), 2, 309–338, Elsevier,
Amsterdam, 2005.
[38] Y. Sun, Y. Jiang, and A. Rasila, On a subclass of close-to-convex harmonic mappings,
Complex Var. Elliptic Equ. 61, 1627–1643, 2016.
[39] D. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy, Third Hankel determinant
for bounded turning functions of order alpha, J. Nigerian Math. Soc. 34, 121–127,
2015.
[40] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions,
Mediterr. J. Math. 14 (1), Art. 19, 10 pp., 2017.
Sun, Y., Wang, Z.-g., & Rasila, A. (2019). On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings. Hacettepe Journal of Mathematics and Statistics, 48(6), 1695-1705. https://doi.org/10.15672/HJMS.2018.632
AMA
Sun Y, Wang Zg, Rasila A. On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings. Hacettepe Journal of Mathematics and Statistics. December 2019;48(6):1695-1705. doi:10.15672/HJMS.2018.632
Chicago
Sun, Yong, Zhi-gang Wang, and Antti Rasila. “On Third Hankel Determinants for Subclasses of Analytic Functions and Close-to-Convex Harmonic Mappings”. Hacettepe Journal of Mathematics and Statistics 48, no. 6 (December 2019): 1695-1705. https://doi.org/10.15672/HJMS.2018.632.
EndNote
Sun Y, Wang Z-g, Rasila A (December 1, 2019) On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings. Hacettepe Journal of Mathematics and Statistics 48 6 1695–1705.
IEEE
Y. Sun, Z.-g. Wang, and A. Rasila, “On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, pp. 1695–1705, 2019, doi: 10.15672/HJMS.2018.632.
ISNAD
Sun, Yong et al. “On Third Hankel Determinants for Subclasses of Analytic Functions and Close-to-Convex Harmonic Mappings”. Hacettepe Journal of Mathematics and Statistics 48/6 (December 2019), 1695-1705. https://doi.org/10.15672/HJMS.2018.632.
JAMA
Sun Y, Wang Z-g, Rasila A. On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings. Hacettepe Journal of Mathematics and Statistics. 2019;48:1695–1705.
MLA
Sun, Yong et al. “On Third Hankel Determinants for Subclasses of Analytic Functions and Close-to-Convex Harmonic Mappings”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, 2019, pp. 1695-0, doi:10.15672/HJMS.2018.632.
Vancouver
Sun Y, Wang Z-g, Rasila A. On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings. Hacettepe Journal of Mathematics and Statistics. 2019;48(6):1695-70.