Research Article
BibTex RIS Cite

Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring

Year 2023, , 1379 - 1395, 31.10.2023
https://doi.org/10.15672/hujms.961868

Abstract

In this study, the stress-strength reliability, $R=P(Y

References

  • [1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance index for Kumaraswamy distribution under first-failure progressive censoring scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
  • [1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance index for Kumaraswamy distribution under first-failure progressive censoring scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
  • [2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14 (11), 5239-5247, 2017.
  • [2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14 (11), 5239-5247, 2017.
  • [3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
  • [3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
  • [4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685- 1702, 2006.
  • [4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685- 1702, 2006.
  • [5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
  • [5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
  • [6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions), Test 16 (2), 211-296, 2007.
  • [6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions), Test 16 (2), 211-296, 2007.
  • [7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science & Business Media, 2000.
  • [7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science & Business Media, 2000.
  • [8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
  • [8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
  • [9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
  • [9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
  • [10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
  • [10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
  • [11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3), 327-339, 1963.
  • [11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3), 327-339, 1963.
  • [12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric inference for the reliability of copula-based stress-strength models, Qual. Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
  • [12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric inference for the reliability of copula-based stress-strength models, Qual. Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
  • [13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the generalized Gompertz distribution under progressive type-II right censored samples, Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
  • [13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the generalized Gompertz distribution under progressive type-II right censored samples, Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
  • [14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1982.
  • [14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1982.
  • [15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution, Appl. Math. Model. 37 (1-2), 13-24, 2013.
  • [15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution, Appl. Math. Model. 37 (1-2), 13-24, 2013.
  • [16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
  • [16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
  • [17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45 (2), 641-659, 2021.
  • [17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45 (2), 641-659, 2021.
  • [18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
  • [18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
  • [19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis of mechanical components under multistage load based on strength degradation, Qual. Reliab. Eng. Int. 37 (2), 567-582, 2021.
  • [19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis of mechanical components under multistage load based on strength degradation, Qual. Reliab. Eng. Int. 37 (2), 567-582, 2021.
  • [20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution, Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
  • [20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution, Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
  • [21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066, 2017.
  • [21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066, 2017.
  • [22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
  • [22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
  • [23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339- 352, 2013.
  • [23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339- 352, 2013.
  • [24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 (1), 102–107, 1958.
  • [24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 (1), 102–107, 1958.
  • [25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación Operative 31, 223-245, 1980.
  • [25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación Operative 31, 223-245, 1980.
  • [26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
  • [26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
  • [27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance index with power Rayleigh distribution based on progressive first-failure– censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
  • [27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance index with power Rayleigh distribution based on progressive first-failure– censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
  • [28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive censoring, Technometrics 13 (3), 521-534, 1971.
  • [28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive censoring, Technometrics 13 (3), 521-534, 1971.
  • [29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386, 2002.
  • [29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386, 2002.
  • [30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
  • [30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
  • [31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
  • [31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
  • [32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
  • [32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
  • [33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447- 1453, 2017.
  • [33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447- 1453, 2017.
  • [34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
  • [34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
  • [35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729- 744, 2012.
  • [35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729- 744, 2012.
  • [36] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
  • [36] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
  • [37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42 (24), 4476-4498, 2013.
  • [37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42 (24), 4476-4498, 2013.
  • [38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84-91, 1994.
  • [38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84-91, 1994.
  • [39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
  • [39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
  • [40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
  • [40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
  • [41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic distribution under adaptive type II progressive censoring, Entropy 23 (12), 1558, 2021.
  • [41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic distribution under adaptive type II progressive censoring, Entropy 23 (12), 1558, 2021.
  • [42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71, 1996.
  • [42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71, 1996.
Year 2023, , 1379 - 1395, 31.10.2023
https://doi.org/10.15672/hujms.961868

Abstract

References

  • [1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance index for Kumaraswamy distribution under first-failure progressive censoring scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
  • [1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance index for Kumaraswamy distribution under first-failure progressive censoring scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
  • [2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14 (11), 5239-5247, 2017.
  • [2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14 (11), 5239-5247, 2017.
  • [3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
  • [3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
  • [4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685- 1702, 2006.
  • [4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685- 1702, 2006.
  • [5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
  • [5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
  • [6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions), Test 16 (2), 211-296, 2007.
  • [6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions), Test 16 (2), 211-296, 2007.
  • [7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science & Business Media, 2000.
  • [7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science & Business Media, 2000.
  • [8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
  • [8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
  • [9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
  • [9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
  • [10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
  • [10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
  • [11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3), 327-339, 1963.
  • [11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3), 327-339, 1963.
  • [12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric inference for the reliability of copula-based stress-strength models, Qual. Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
  • [12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric inference for the reliability of copula-based stress-strength models, Qual. Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
  • [13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the generalized Gompertz distribution under progressive type-II right censored samples, Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
  • [13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the generalized Gompertz distribution under progressive type-II right censored samples, Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
  • [14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1982.
  • [14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1982.
  • [15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution, Appl. Math. Model. 37 (1-2), 13-24, 2013.
  • [15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution, Appl. Math. Model. 37 (1-2), 13-24, 2013.
  • [16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
  • [16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
  • [17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45 (2), 641-659, 2021.
  • [17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45 (2), 641-659, 2021.
  • [18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
  • [18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
  • [19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis of mechanical components under multistage load based on strength degradation, Qual. Reliab. Eng. Int. 37 (2), 567-582, 2021.
  • [19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis of mechanical components under multistage load based on strength degradation, Qual. Reliab. Eng. Int. 37 (2), 567-582, 2021.
  • [20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution, Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
  • [20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution, Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
  • [21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066, 2017.
  • [21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066, 2017.
  • [22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
  • [22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
  • [23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339- 352, 2013.
  • [23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339- 352, 2013.
  • [24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 (1), 102–107, 1958.
  • [24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 (1), 102–107, 1958.
  • [25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación Operative 31, 223-245, 1980.
  • [25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación Operative 31, 223-245, 1980.
  • [26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
  • [26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
  • [27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance index with power Rayleigh distribution based on progressive first-failure– censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
  • [27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance index with power Rayleigh distribution based on progressive first-failure– censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
  • [28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive censoring, Technometrics 13 (3), 521-534, 1971.
  • [28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive censoring, Technometrics 13 (3), 521-534, 1971.
  • [29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386, 2002.
  • [29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386, 2002.
  • [30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
  • [30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
  • [31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
  • [31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
  • [32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
  • [32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
  • [33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447- 1453, 2017.
  • [33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447- 1453, 2017.
  • [34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
  • [34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
  • [35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729- 744, 2012.
  • [35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729- 744, 2012.
  • [36] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
  • [36] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
  • [37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42 (24), 4476-4498, 2013.
  • [37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42 (24), 4476-4498, 2013.
  • [38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84-91, 1994.
  • [38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84-91, 1994.
  • [39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
  • [39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
  • [40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
  • [40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
  • [41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic distribution under adaptive type II progressive censoring, Entropy 23 (12), 1558, 2021.
  • [41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic distribution under adaptive type II progressive censoring, Entropy 23 (12), 1558, 2021.
  • [42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71, 1996.
  • [42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71, 1996.
There are 84 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Fatma Çiftci 0000-0001-6362-1777

Buğra Saraçoğlu 0000-0003-1713-2862

Neriman Akdam 0000-0002-0204-6657

Yunus Akdoğan 0000-0003-3520-7493

Early Pub Date May 7, 2023
Publication Date October 31, 2023
Published in Issue Year 2023

Cite

APA Çiftci, F., Saraçoğlu, B., Akdam, N., Akdoğan, Y. (2023). Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics, 52(5), 1379-1395. https://doi.org/10.15672/hujms.961868
AMA Çiftci F, Saraçoğlu B, Akdam N, Akdoğan Y. Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics. October 2023;52(5):1379-1395. doi:10.15672/hujms.961868
Chicago Çiftci, Fatma, Buğra Saraçoğlu, Neriman Akdam, and Yunus Akdoğan. “Estimation of Stress-Strength Reliability for Generalized Gompertz Distribution under Progressive Type-II Censoring”. Hacettepe Journal of Mathematics and Statistics 52, no. 5 (October 2023): 1379-95. https://doi.org/10.15672/hujms.961868.
EndNote Çiftci F, Saraçoğlu B, Akdam N, Akdoğan Y (October 1, 2023) Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics 52 5 1379–1395.
IEEE F. Çiftci, B. Saraçoğlu, N. Akdam, and Y. Akdoğan, “Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, pp. 1379–1395, 2023, doi: 10.15672/hujms.961868.
ISNAD Çiftci, Fatma et al. “Estimation of Stress-Strength Reliability for Generalized Gompertz Distribution under Progressive Type-II Censoring”. Hacettepe Journal of Mathematics and Statistics 52/5 (October 2023), 1379-1395. https://doi.org/10.15672/hujms.961868.
JAMA Çiftci F, Saraçoğlu B, Akdam N, Akdoğan Y. Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics. 2023;52:1379–1395.
MLA Çiftci, Fatma et al. “Estimation of Stress-Strength Reliability for Generalized Gompertz Distribution under Progressive Type-II Censoring”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, 2023, pp. 1379-95, doi:10.15672/hujms.961868.
Vancouver Çiftci F, Saraçoğlu B, Akdam N, Akdoğan Y. Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics. 2023;52(5):1379-95.