Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 3, 874 - 893, 24.06.2025
https://doi.org/10.15672/hujms.1357924

Abstract

References

  • [1] J.E. Andersen, Geometric quantization of symplectic manifolds with respect to reducible non-negative polarization, Commun. Math. Phys., 183, 401–421, 1997.
  • [2] R.J. Berman, Relative Kähler Ricci flow and their quantization, Anal. PDE, 6, 131– 180, 2013.
  • [3] A.M. Blaga, Geometric solitons in a D-homothetically deformed Kenmotsu manifold, Filomat, 36, 175–186, 2022.
  • [4] A.M. Blaga and H.M. Taştan, Some results on almost $\eta$-Ricci–Bourguignon solitons, J. Geom. Phys. 168, 104316, 2021.
  • [5] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser, New York, 2010.
  • [6] D.E. Blair, The theory of quasi-Sasakian structures, J. Differential Geom. 1, 331–345, 1967.
  • [7] D.E. Blair, T. Koufogiorgos, and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91, 189–214, 1995.
  • [8] X. Chen, Almost quasi-Yamabe solitons on almost cosymplectic manifolds, Int. J. Geom. Methods Mod. Phys. 17, 2050070, 2020.
  • [9] X. Chen, Cotton solitons on almost coKähler 3-manifolds, Quaest. Math. 44, 1055– 1075, 2021.
  • [10] X. Chen, The k-almost Yamabe solitons and coKähler manifolds, Int. J. Geom. Methods Mod. Phys. 18, 2150179, 2021.
  • [11] X. Chen, Three-dimensional contact metric manifolds with cotton solitons, Hiroshima J. Math. 51, 275–299, 2021.
  • [12] X. Dai, Y. Zhao, and U.C. De, $\star$-Ricci curvature on $(\kappa,\mu)$-almost Kenmotsu manifolds, Open Math. 17, 874–882, 2019.
  • [13] U.C. De, S.K. Chaubey, and Y.J. Suh, A note on almost coKähler manifolds, Int. J. Geom. Methods Mod. Phys. 17 (10), 2050153, 2020.
  • [14] U.C. De, S.K. Chaubey, and Y.J. Suh, Gradient Yamabe and gradient m-quasi- Einstein metrics on three-dimensional cosymplectic manifolds, Mediterr. J. Math. 18, Art. No. 80, 2021.
  • [15] U.C. De and A. Sardar, Classification of $(\kappa,\mu)$-almost coKähler manifolds with vanishing Bach tensor and divergence free Cotton tensor, Commun. Korean Math. Soc. 35, 1245–1254, 2020.
  • [16] U.C. De and Y.J. Suh, Yamabe and quasi-Yamabe solitons in para contact manifolds, Int. J. Geom. Methods Mod. Phys. 18, 2150196, 2021.
  • [17] U.C. De, Y.J. Suh, and S.K. Chaubey, Conformal vector fields on almost coKähler manifolds, Math. Slovaca 71, 1545–4552, 2021.
  • [18] A.E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav. 21, 171–218, 2004.
  • [19] S. Güler and M. Crasmareanu, Ricci–Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turk. J. Math. 43, 2631–2641, 2019.
  • [20] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci $\star$-tensor, Tokyo J. Math. 25, 473–483, 2002.
  • [21] R.S. Hamilton, Lectures on geometric flows, 1989, (Unpublished).
  • [22] R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71, 237–261, 1988.
  • [23] G. Kaimakamis and K. Panagiotidou, $\star$-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86, 408–413, 2014.
  • [24] T. Mandal, Ricci–Yamabe solitons on $(\kappa,\mu)$-almost coKähler manifolds, Afr. Mat. 33, Art. No. 38, 10pp, 2022.
  • [25] C. Özgür, On Ricci solitons with a semisymmetric metric connection, Filomat, 35, 3635–3641, 2021.
  • [26] A. Sarkar and G.G. Biswas, $\star$-Ricci solitons on three dimensional trans-Sasakian manifolds, The Mathematics Student, 88, 153–164, 2019.
  • [27] A. Sarkar and G.G. Biswas, Ricci solitons on generalized Sasakian space forms with quasi-Sasakian metric, Afr. Mat. 31, 455–463, 2020.
  • [28] A. Sardar, M.N.I. Khan, and U.C. De, $\eta$-$\star$-Ricci solitons and almost coKähler manifolds, Mathematics 9(24), 3200, 2021.
  • [29] R. Sharma, A 3-dimensional Sasakian metric as a Yamabe soliton, Int. J. Geom. Methods Mod. Phys, 9(4), 1220003, 2012.
  • [30] Y.J. Suh and U.C. De, Yamabe solitons and Ricci Yamabe solitons on almost coKähler manifolds, Canad. Math. Bull. 62, 653–661, 2019.
  • [31] S. Tachibana, On almost-analytic vectors in almost Kählerian manifolds, Tohoku Math. J. 11, 247–265, 1959.
  • [32] S. Tanno, Some transformations on manifolds with almost contact and contact metric structures II, Tohoku Math. J. 15, 322–331, 1963.
  • [33] Y. Wang, A generalization of the Goldberg conjecture for coKähler manifolds, Mediterr. J. Math. 13, 2679–2690, 2016.
  • [34] Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin 23, 345–355, 2016.
  • [35] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca, 67, 979–984, 2017.
  • [36] Y. Wang, Ricci solitons on almost coKähler manifolds, Canad. Math. Bull. 62, 912– 922, 2019.
  • [37] Y. Wang, Contact 3-manifolds and $\star$-Ricci solitons, Kodai Math. J. 43, 256–267, 2020.
  • [38] Y. Wang, Almost Kenmotsu $(\kappa, \mu)$-manifolds with Yamabe solitons, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 115, Art. No. 14, 2021.
  • [39] W. Wang, Almost cosymplectic $(\kappa, \mu)$-metrics as $\eta$-Ricci solitons, J. Nonlinear Math. Phys. 29, 58–72, 2022.
  • [40] E. Woolgar, Some applications of Ricci flow in Physics, Canadian J. Phys. 86, 2008.
  • [41] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.

$\star$-Ricci-Yamabe solitons on almost coKähler manifolds

Year 2025, Volume: 54 Issue: 3, 874 - 893, 24.06.2025
https://doi.org/10.15672/hujms.1357924

Abstract

The aim of the present article is to analyze $\star$-Ricci--Yamabe solitons on almost coKähler manifolds and to characterize them when the potential vector field is pointwise collinear with the Reeb vector field. It is proved that a compact almost coKähler manifold admitting a $\star$-Ricci--Yamabe soliton under certain restriction on $\star$-scalar curvature is coKähler and $\star$-Ricci flat; in addition, that the soliton is steady. $(\kappa, \mu)$-almost coKähler manifolds admitting such solitons are also considered and finally, the obtained results are completed by non-trivial examples.

References

  • [1] J.E. Andersen, Geometric quantization of symplectic manifolds with respect to reducible non-negative polarization, Commun. Math. Phys., 183, 401–421, 1997.
  • [2] R.J. Berman, Relative Kähler Ricci flow and their quantization, Anal. PDE, 6, 131– 180, 2013.
  • [3] A.M. Blaga, Geometric solitons in a D-homothetically deformed Kenmotsu manifold, Filomat, 36, 175–186, 2022.
  • [4] A.M. Blaga and H.M. Taştan, Some results on almost $\eta$-Ricci–Bourguignon solitons, J. Geom. Phys. 168, 104316, 2021.
  • [5] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser, New York, 2010.
  • [6] D.E. Blair, The theory of quasi-Sasakian structures, J. Differential Geom. 1, 331–345, 1967.
  • [7] D.E. Blair, T. Koufogiorgos, and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91, 189–214, 1995.
  • [8] X. Chen, Almost quasi-Yamabe solitons on almost cosymplectic manifolds, Int. J. Geom. Methods Mod. Phys. 17, 2050070, 2020.
  • [9] X. Chen, Cotton solitons on almost coKähler 3-manifolds, Quaest. Math. 44, 1055– 1075, 2021.
  • [10] X. Chen, The k-almost Yamabe solitons and coKähler manifolds, Int. J. Geom. Methods Mod. Phys. 18, 2150179, 2021.
  • [11] X. Chen, Three-dimensional contact metric manifolds with cotton solitons, Hiroshima J. Math. 51, 275–299, 2021.
  • [12] X. Dai, Y. Zhao, and U.C. De, $\star$-Ricci curvature on $(\kappa,\mu)$-almost Kenmotsu manifolds, Open Math. 17, 874–882, 2019.
  • [13] U.C. De, S.K. Chaubey, and Y.J. Suh, A note on almost coKähler manifolds, Int. J. Geom. Methods Mod. Phys. 17 (10), 2050153, 2020.
  • [14] U.C. De, S.K. Chaubey, and Y.J. Suh, Gradient Yamabe and gradient m-quasi- Einstein metrics on three-dimensional cosymplectic manifolds, Mediterr. J. Math. 18, Art. No. 80, 2021.
  • [15] U.C. De and A. Sardar, Classification of $(\kappa,\mu)$-almost coKähler manifolds with vanishing Bach tensor and divergence free Cotton tensor, Commun. Korean Math. Soc. 35, 1245–1254, 2020.
  • [16] U.C. De and Y.J. Suh, Yamabe and quasi-Yamabe solitons in para contact manifolds, Int. J. Geom. Methods Mod. Phys. 18, 2150196, 2021.
  • [17] U.C. De, Y.J. Suh, and S.K. Chaubey, Conformal vector fields on almost coKähler manifolds, Math. Slovaca 71, 1545–4552, 2021.
  • [18] A.E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav. 21, 171–218, 2004.
  • [19] S. Güler and M. Crasmareanu, Ricci–Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turk. J. Math. 43, 2631–2641, 2019.
  • [20] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci $\star$-tensor, Tokyo J. Math. 25, 473–483, 2002.
  • [21] R.S. Hamilton, Lectures on geometric flows, 1989, (Unpublished).
  • [22] R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71, 237–261, 1988.
  • [23] G. Kaimakamis and K. Panagiotidou, $\star$-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86, 408–413, 2014.
  • [24] T. Mandal, Ricci–Yamabe solitons on $(\kappa,\mu)$-almost coKähler manifolds, Afr. Mat. 33, Art. No. 38, 10pp, 2022.
  • [25] C. Özgür, On Ricci solitons with a semisymmetric metric connection, Filomat, 35, 3635–3641, 2021.
  • [26] A. Sarkar and G.G. Biswas, $\star$-Ricci solitons on three dimensional trans-Sasakian manifolds, The Mathematics Student, 88, 153–164, 2019.
  • [27] A. Sarkar and G.G. Biswas, Ricci solitons on generalized Sasakian space forms with quasi-Sasakian metric, Afr. Mat. 31, 455–463, 2020.
  • [28] A. Sardar, M.N.I. Khan, and U.C. De, $\eta$-$\star$-Ricci solitons and almost coKähler manifolds, Mathematics 9(24), 3200, 2021.
  • [29] R. Sharma, A 3-dimensional Sasakian metric as a Yamabe soliton, Int. J. Geom. Methods Mod. Phys, 9(4), 1220003, 2012.
  • [30] Y.J. Suh and U.C. De, Yamabe solitons and Ricci Yamabe solitons on almost coKähler manifolds, Canad. Math. Bull. 62, 653–661, 2019.
  • [31] S. Tachibana, On almost-analytic vectors in almost Kählerian manifolds, Tohoku Math. J. 11, 247–265, 1959.
  • [32] S. Tanno, Some transformations on manifolds with almost contact and contact metric structures II, Tohoku Math. J. 15, 322–331, 1963.
  • [33] Y. Wang, A generalization of the Goldberg conjecture for coKähler manifolds, Mediterr. J. Math. 13, 2679–2690, 2016.
  • [34] Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin 23, 345–355, 2016.
  • [35] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca, 67, 979–984, 2017.
  • [36] Y. Wang, Ricci solitons on almost coKähler manifolds, Canad. Math. Bull. 62, 912– 922, 2019.
  • [37] Y. Wang, Contact 3-manifolds and $\star$-Ricci solitons, Kodai Math. J. 43, 256–267, 2020.
  • [38] Y. Wang, Almost Kenmotsu $(\kappa, \mu)$-manifolds with Yamabe solitons, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 115, Art. No. 14, 2021.
  • [39] W. Wang, Almost cosymplectic $(\kappa, \mu)$-metrics as $\eta$-Ricci solitons, J. Nonlinear Math. Phys. 29, 58–72, 2022.
  • [40] E. Woolgar, Some applications of Ricci flow in Physics, Canadian J. Phys. 86, 2008.
  • [41] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.
There are 41 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Mathematics
Authors

U.c. De 0000-0002-8990-4609

Adara M. Blaga 0000-0003-0237-3866

Avijit Sarkar 0000-0002-7370-1698

Tarak Mandal 0000-0003-4808-8454

Early Pub Date January 27, 2025
Publication Date June 24, 2025
Published in Issue Year 2025 Volume: 54 Issue: 3

Cite

APA De, U., Blaga, A. M., Sarkar, A., Mandal, T. (2025). $\star$-Ricci-Yamabe solitons on almost coKähler manifolds. Hacettepe Journal of Mathematics and Statistics, 54(3), 874-893. https://doi.org/10.15672/hujms.1357924
AMA De U, Blaga AM, Sarkar A, Mandal T. $\star$-Ricci-Yamabe solitons on almost coKähler manifolds. Hacettepe Journal of Mathematics and Statistics. June 2025;54(3):874-893. doi:10.15672/hujms.1357924
Chicago De, U.c., Adara M. Blaga, Avijit Sarkar, and Tarak Mandal. “$\star$-Ricci-Yamabe Solitons on Almost CoKähler Manifolds”. Hacettepe Journal of Mathematics and Statistics 54, no. 3 (June 2025): 874-93. https://doi.org/10.15672/hujms.1357924.
EndNote De U, Blaga AM, Sarkar A, Mandal T (June 1, 2025) $\star$-Ricci-Yamabe solitons on almost coKähler manifolds. Hacettepe Journal of Mathematics and Statistics 54 3 874–893.
IEEE U. De, A. M. Blaga, A. Sarkar, and T. Mandal, “$\star$-Ricci-Yamabe solitons on almost coKähler manifolds”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 3, pp. 874–893, 2025, doi: 10.15672/hujms.1357924.
ISNAD De, U.c. et al. “$\star$-Ricci-Yamabe Solitons on Almost CoKähler Manifolds”. Hacettepe Journal of Mathematics and Statistics 54/3 (June2025), 874-893. https://doi.org/10.15672/hujms.1357924.
JAMA De U, Blaga AM, Sarkar A, Mandal T. $\star$-Ricci-Yamabe solitons on almost coKähler manifolds. Hacettepe Journal of Mathematics and Statistics. 2025;54:874–893.
MLA De, U.c. et al. “$\star$-Ricci-Yamabe Solitons on Almost CoKähler Manifolds”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 3, 2025, pp. 874-93, doi:10.15672/hujms.1357924.
Vancouver De U, Blaga AM, Sarkar A, Mandal T. $\star$-Ricci-Yamabe solitons on almost coKähler manifolds. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):874-93.