Year 2025,
Volume: 54 Issue: 3, 874 - 893, 24.06.2025
U.c. De
,
Adara M. Blaga
,
Avijit Sarkar
,
Tarak Mandal
References
-
[1] J.E. Andersen, Geometric quantization of symplectic manifolds with respect to reducible
non-negative polarization, Commun. Math. Phys., 183, 401–421, 1997.
-
[2] R.J. Berman, Relative Kähler Ricci flow and their quantization, Anal. PDE, 6, 131–
180, 2013.
-
[3] A.M. Blaga, Geometric solitons in a D-homothetically deformed Kenmotsu manifold,
Filomat, 36, 175–186, 2022.
-
[4] A.M. Blaga and H.M. Taştan, Some results on almost $\eta$-Ricci–Bourguignon solitons,
J. Geom. Phys. 168, 104316, 2021.
-
[5] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
Mathematics, 203, Birkhäuser, New York, 2010.
-
[6] D.E. Blair, The theory of quasi-Sasakian structures, J. Differential Geom. 1, 331–345,
1967.
-
[7] D.E. Blair, T. Koufogiorgos, and B.J. Papantoniou, Contact metric manifolds satisfying
a nullity condition, Israel J. Math. 91, 189–214, 1995.
-
[8] X. Chen, Almost quasi-Yamabe solitons on almost cosymplectic manifolds, Int. J.
Geom. Methods Mod. Phys. 17, 2050070, 2020.
-
[9] X. Chen, Cotton solitons on almost coKähler 3-manifolds, Quaest. Math. 44, 1055–
1075, 2021.
-
[10] X. Chen, The k-almost Yamabe solitons and coKähler manifolds, Int. J. Geom. Methods
Mod. Phys. 18, 2150179, 2021.
-
[11] X. Chen, Three-dimensional contact metric manifolds with cotton solitons, Hiroshima
J. Math. 51, 275–299, 2021.
-
[12] X. Dai, Y. Zhao, and U.C. De, $\star$-Ricci curvature on $(\kappa,\mu)$-almost Kenmotsu manifolds,
Open Math. 17, 874–882, 2019.
-
[13] U.C. De, S.K. Chaubey, and Y.J. Suh, A note on almost coKähler manifolds, Int. J.
Geom. Methods Mod. Phys. 17 (10), 2050153, 2020.
-
[14] U.C. De, S.K. Chaubey, and Y.J. Suh, Gradient Yamabe and gradient m-quasi-
Einstein metrics on three-dimensional cosymplectic manifolds, Mediterr. J. Math. 18,
Art. No. 80, 2021.
-
[15] U.C. De and A. Sardar, Classification of $(\kappa,\mu)$-almost coKähler manifolds with vanishing
Bach tensor and divergence free Cotton tensor, Commun. Korean Math. Soc.
35, 1245–1254, 2020.
-
[16] U.C. De and Y.J. Suh, Yamabe and quasi-Yamabe solitons in para contact manifolds,
Int. J. Geom. Methods Mod. Phys. 18, 2150196, 2021.
-
[17] U.C. De, Y.J. Suh, and S.K. Chaubey, Conformal vector fields on almost coKähler
manifolds, Math. Slovaca 71, 1545–4552, 2021.
-
[18] A.E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav. 21,
171–218, 2004.
-
[19] S. Güler and M. Crasmareanu, Ricci–Yamabe maps for Riemannian flow and their
volume variation and volume entropy, Turk. J. Math. 43, 2631–2641, 2019.
-
[20] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci $\star$-tensor,
Tokyo J. Math. 25, 473–483, 2002.
-
[21] R.S. Hamilton, Lectures on geometric flows, 1989, (Unpublished).
-
[22] R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71, 237–261, 1988.
-
[23] G. Kaimakamis and K. Panagiotidou, $\star$-Ricci solitons of real hypersurfaces in non-flat
complex space forms, J. Geom. Phys. 86, 408–413, 2014.
-
[24] T. Mandal, Ricci–Yamabe solitons on $(\kappa,\mu)$-almost coKähler manifolds, Afr. Mat. 33,
Art. No. 38, 10pp, 2022.
-
[25] C. Özgür, On Ricci solitons with a semisymmetric metric connection, Filomat, 35,
3635–3641, 2021.
-
[26] A. Sarkar and G.G. Biswas, $\star$-Ricci solitons on three dimensional trans-Sasakian
manifolds, The Mathematics Student, 88, 153–164, 2019.
-
[27] A. Sarkar and G.G. Biswas, Ricci solitons on generalized Sasakian space forms with
quasi-Sasakian metric, Afr. Mat. 31, 455–463, 2020.
-
[28] A. Sardar, M.N.I. Khan, and U.C. De, $\eta$-$\star$-Ricci solitons and almost coKähler manifolds,
Mathematics 9(24), 3200, 2021.
-
[29] R. Sharma, A 3-dimensional Sasakian metric as a Yamabe soliton, Int. J. Geom.
Methods Mod. Phys, 9(4), 1220003, 2012.
-
[30] Y.J. Suh and U.C. De, Yamabe solitons and Ricci Yamabe solitons on almost coKähler
manifolds, Canad. Math. Bull. 62, 653–661, 2019.
-
[31] S. Tachibana, On almost-analytic vectors in almost Kählerian manifolds, Tohoku
Math. J. 11, 247–265, 1959.
-
[32] S. Tanno, Some transformations on manifolds with almost contact and contact metric
structures II, Tohoku Math. J. 15, 322–331, 1963.
-
[33] Y. Wang, A generalization of the Goldberg conjecture for coKähler manifolds,
Mediterr. J. Math. 13, 2679–2690, 2016.
-
[34] Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg.
Math. Soc. Simon Stevin 23, 345–355, 2016.
-
[35] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca, 67,
979–984, 2017.
-
[36] Y. Wang, Ricci solitons on almost coKähler manifolds, Canad. Math. Bull. 62, 912–
922, 2019.
-
[37] Y. Wang, Contact 3-manifolds and $\star$-Ricci solitons, Kodai Math. J. 43, 256–267,
2020.
-
[38] Y. Wang, Almost Kenmotsu $(\kappa, \mu)$-manifolds with Yamabe solitons, Rev. Real Acad.
Cienc. Exactas Fis. Nat. Ser. A-Mat. 115, Art. No. 14, 2021.
-
[39] W. Wang, Almost cosymplectic $(\kappa, \mu)$-metrics as $\eta$-Ricci solitons, J. Nonlinear Math.
Phys. 29, 58–72, 2022.
-
[40] E. Woolgar, Some applications of Ricci flow in Physics, Canadian J. Phys. 86, 2008.
-
[41] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.
$\star$-Ricci-Yamabe solitons on almost coKähler manifolds
Year 2025,
Volume: 54 Issue: 3, 874 - 893, 24.06.2025
U.c. De
,
Adara M. Blaga
,
Avijit Sarkar
,
Tarak Mandal
Abstract
The aim of the present article is to analyze $\star$-Ricci--Yamabe solitons on almost coKähler manifolds and to characterize them when the potential vector field is pointwise collinear with the Reeb vector field. It is proved that a compact almost coKähler manifold admitting a $\star$-Ricci--Yamabe soliton under certain restriction on $\star$-scalar curvature is coKähler and $\star$-Ricci flat; in addition, that the soliton is steady. $(\kappa, \mu)$-almost coKähler manifolds admitting such solitons are also considered and finally, the obtained results are completed by non-trivial examples.
References
-
[1] J.E. Andersen, Geometric quantization of symplectic manifolds with respect to reducible
non-negative polarization, Commun. Math. Phys., 183, 401–421, 1997.
-
[2] R.J. Berman, Relative Kähler Ricci flow and their quantization, Anal. PDE, 6, 131–
180, 2013.
-
[3] A.M. Blaga, Geometric solitons in a D-homothetically deformed Kenmotsu manifold,
Filomat, 36, 175–186, 2022.
-
[4] A.M. Blaga and H.M. Taştan, Some results on almost $\eta$-Ricci–Bourguignon solitons,
J. Geom. Phys. 168, 104316, 2021.
-
[5] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
Mathematics, 203, Birkhäuser, New York, 2010.
-
[6] D.E. Blair, The theory of quasi-Sasakian structures, J. Differential Geom. 1, 331–345,
1967.
-
[7] D.E. Blair, T. Koufogiorgos, and B.J. Papantoniou, Contact metric manifolds satisfying
a nullity condition, Israel J. Math. 91, 189–214, 1995.
-
[8] X. Chen, Almost quasi-Yamabe solitons on almost cosymplectic manifolds, Int. J.
Geom. Methods Mod. Phys. 17, 2050070, 2020.
-
[9] X. Chen, Cotton solitons on almost coKähler 3-manifolds, Quaest. Math. 44, 1055–
1075, 2021.
-
[10] X. Chen, The k-almost Yamabe solitons and coKähler manifolds, Int. J. Geom. Methods
Mod. Phys. 18, 2150179, 2021.
-
[11] X. Chen, Three-dimensional contact metric manifolds with cotton solitons, Hiroshima
J. Math. 51, 275–299, 2021.
-
[12] X. Dai, Y. Zhao, and U.C. De, $\star$-Ricci curvature on $(\kappa,\mu)$-almost Kenmotsu manifolds,
Open Math. 17, 874–882, 2019.
-
[13] U.C. De, S.K. Chaubey, and Y.J. Suh, A note on almost coKähler manifolds, Int. J.
Geom. Methods Mod. Phys. 17 (10), 2050153, 2020.
-
[14] U.C. De, S.K. Chaubey, and Y.J. Suh, Gradient Yamabe and gradient m-quasi-
Einstein metrics on three-dimensional cosymplectic manifolds, Mediterr. J. Math. 18,
Art. No. 80, 2021.
-
[15] U.C. De and A. Sardar, Classification of $(\kappa,\mu)$-almost coKähler manifolds with vanishing
Bach tensor and divergence free Cotton tensor, Commun. Korean Math. Soc.
35, 1245–1254, 2020.
-
[16] U.C. De and Y.J. Suh, Yamabe and quasi-Yamabe solitons in para contact manifolds,
Int. J. Geom. Methods Mod. Phys. 18, 2150196, 2021.
-
[17] U.C. De, Y.J. Suh, and S.K. Chaubey, Conformal vector fields on almost coKähler
manifolds, Math. Slovaca 71, 1545–4552, 2021.
-
[18] A.E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav. 21,
171–218, 2004.
-
[19] S. Güler and M. Crasmareanu, Ricci–Yamabe maps for Riemannian flow and their
volume variation and volume entropy, Turk. J. Math. 43, 2631–2641, 2019.
-
[20] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci $\star$-tensor,
Tokyo J. Math. 25, 473–483, 2002.
-
[21] R.S. Hamilton, Lectures on geometric flows, 1989, (Unpublished).
-
[22] R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71, 237–261, 1988.
-
[23] G. Kaimakamis and K. Panagiotidou, $\star$-Ricci solitons of real hypersurfaces in non-flat
complex space forms, J. Geom. Phys. 86, 408–413, 2014.
-
[24] T. Mandal, Ricci–Yamabe solitons on $(\kappa,\mu)$-almost coKähler manifolds, Afr. Mat. 33,
Art. No. 38, 10pp, 2022.
-
[25] C. Özgür, On Ricci solitons with a semisymmetric metric connection, Filomat, 35,
3635–3641, 2021.
-
[26] A. Sarkar and G.G. Biswas, $\star$-Ricci solitons on three dimensional trans-Sasakian
manifolds, The Mathematics Student, 88, 153–164, 2019.
-
[27] A. Sarkar and G.G. Biswas, Ricci solitons on generalized Sasakian space forms with
quasi-Sasakian metric, Afr. Mat. 31, 455–463, 2020.
-
[28] A. Sardar, M.N.I. Khan, and U.C. De, $\eta$-$\star$-Ricci solitons and almost coKähler manifolds,
Mathematics 9(24), 3200, 2021.
-
[29] R. Sharma, A 3-dimensional Sasakian metric as a Yamabe soliton, Int. J. Geom.
Methods Mod. Phys, 9(4), 1220003, 2012.
-
[30] Y.J. Suh and U.C. De, Yamabe solitons and Ricci Yamabe solitons on almost coKähler
manifolds, Canad. Math. Bull. 62, 653–661, 2019.
-
[31] S. Tachibana, On almost-analytic vectors in almost Kählerian manifolds, Tohoku
Math. J. 11, 247–265, 1959.
-
[32] S. Tanno, Some transformations on manifolds with almost contact and contact metric
structures II, Tohoku Math. J. 15, 322–331, 1963.
-
[33] Y. Wang, A generalization of the Goldberg conjecture for coKähler manifolds,
Mediterr. J. Math. 13, 2679–2690, 2016.
-
[34] Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg.
Math. Soc. Simon Stevin 23, 345–355, 2016.
-
[35] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca, 67,
979–984, 2017.
-
[36] Y. Wang, Ricci solitons on almost coKähler manifolds, Canad. Math. Bull. 62, 912–
922, 2019.
-
[37] Y. Wang, Contact 3-manifolds and $\star$-Ricci solitons, Kodai Math. J. 43, 256–267,
2020.
-
[38] Y. Wang, Almost Kenmotsu $(\kappa, \mu)$-manifolds with Yamabe solitons, Rev. Real Acad.
Cienc. Exactas Fis. Nat. Ser. A-Mat. 115, Art. No. 14, 2021.
-
[39] W. Wang, Almost cosymplectic $(\kappa, \mu)$-metrics as $\eta$-Ricci solitons, J. Nonlinear Math.
Phys. 29, 58–72, 2022.
-
[40] E. Woolgar, Some applications of Ricci flow in Physics, Canadian J. Phys. 86, 2008.
-
[41] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.