Research Article
BibTex RIS Cite

How to Establish Periodic Law and Periodic System Relation? Inferences in the History and Philosophy of Science for Chemistry Teaching

Year 2019, , 27 - 53, 31.01.2019
https://doi.org/10.16986/HUJE.2018043649

Abstract

The periodic
table is an introduction to the elements and is important in terms of chemistry
education. In many chemistry teaching programs around the world, effective use of
periodic table is aimed. However, considering the characteristics of the periodic
table, it is not possible to encounter with a way or a method to use them in the
literature. For this reason, the aim of this study is to draw attention to the nature
of the periodic table, and to open a door to think that this nature is advantageous
in terms of chemistry education. For this purpose, the historical development and
present situation of the periodic table are briefly mentioned and the concepts of
periodic law, periodic system and periodic table are analyzed from a philosophical
point of view. Afterwards, in the light of the methodological and epistemological
aspects of the historical development of the periodic table, periodic law and periodic
system relations is discussed in the context of the chemistry education for the
effective use of periodic table. In this discussion, the hypothetical-deductive
method was pointed that might be compatible for the effective use of the periodic
system, and some suggestions for chemistry education have been given.

References

  • Alexander, S.V., Sevcik, R.S., McGinty, R.L., & Schultz, L.D. (2008). Periodic table target: a game that introduces the biological significance of chemical element periodicity. Journal of Chemical Education, 85 (4), 516-517. Doi: 10.1021/ed085p516
  • Andrijko, A.A., & Lunk, H.J. (2018). The short form of mendeleev’s periodic table of chemical elements: toolbox for learning the basics of inorganic chemistry. a contribution to celebrate 150 years of the periodic table in 2019. ChemTexts 4, 4. https://doi.org/10.1007/s40828-018-0059-y
  • Aydın, A. (2008). Ortaöğretim Kimya Dersi Öğretim Programında Periyodik Sistem ile İlgili Kavramların Veriliş Sırasının İncelenmesi (A.B.D ve Türkiye Örneği). Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (1), 76-84. [Çevrim-içi: http://fbed.balikesir.edu.tr/index.php/dergi/article/view/307], Erişim tarihi,09.06.2016.
  • Ayvacı, H.Ş. & Bebek, G. (2017). 2013 yılında revize edilen fen bilimleri dersi öğretim programı’nda yer alan kazanımların incelenmesi: model oluşturma ve kullanma konusu. Hasan Ali Yücel Eğitim Fakültesi Dergisi 14-1 (24), 89-104.
  • Azizoğlu, N., Aslan, S., & Pekcan, S. (2015). The periodic system and teaching with analogies model: the effects of teaching method, gender and motivation on students’ achievement. Elementary Education Online, 14(2), 472-488. https://doi.org/ 10.17051/io.2015.39450, Retrieved on May 01, 2018.
  • Ben‐ Zvia, N., & Genuta, S. (1998). Uses and limitations of scientific models: the Periodic Table as an inductive tool. International Journal of Science Education, 20 (3),351-360. http://dx.doi.org/10.1080/0950069980200307
  • Bensaude, V.B. (1986). Mendeleev’s periodic system of chemical elements. British Journal for History of Science,9, 3–17.
  • Boyle, R. (2003). The Sceptical chymist, (The Classic 1661 Text). New York: Dover Publication. [Available online at: http://hti.osu.edu/sites/default/files/robert_boyle_skeptical_chemist.pdf.], Retrieved on January 22, 2012.
  • Brito, A. Rodrı ´guez, M.A., & Niaz, M. (2005). A reconstruction of development of the periodic table based on history and philosophy of science and its implications for general chemistry textbooks. Journal of Research In Science Teaching, 42(1), 84–111. Doi:10.1002/tea.20044
  • Chang, R., & Goldsby, K.A. (2014). Genel kimya, Ankara: Palme Yayıncılık
  • Çüçen, A. K. (2006). Mantık. Bursa: Asa Kitabevi.
  • Demir, Ö. (2000). Bilim felsefesi. Ankara: Vadi Yayınları.
  • Diener, L. & Moore, J.W. (2011). It's Elemental! Science Teacher, 78(5), 40-43. [Available online at: https://www.learntechlib.org/p/50517/], Retrieved on September 01, 2017.
  • Erduran S. (2017) Visualizing the Nature of Science: Beyond Textual Pieces to Holistic Images in Science Education. In: Hahl K., Juuti K., Lampiselkä J., Uitto A., Lavonen J. (eds) Cognitive and Affective Aspects in Science Education Research. Contributions from Science Education Research, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-58685-4_2
  • Erduran, S. (2007). Breaking the law: promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry,9 (3),247-263. doi:10.1007/s10698-007-9036-z
  • Erduran, S., Aduriz A.B., & Naaman, R.M., (2007). Developing epistemologically empowered teachers: examining the role of philosophy of chemistry in teacher education. Science & Education,16(9-10),975-989. Doi:10.1007/s11191-006-9072-4
  • Farrer, N. J., Monk, N., Heron, J., Lough, J.A., & Sadler, P. J. (2010). Chemistry, performance, and pedagogy: an interactive approach to periodic trends. Chemistry Education Research and Practice,11 (4),308-313. Doi: 10.1039/C0RP90011G
  • Firsching F. H. (1981). Anomalies in the periodic table. Journal of Chemical Education,58 (6),478. Doi: 10.1021/ed058p478
  • Fridgen, T.D. (2008). The correlation of binary acid strengths with molecular properties in firstyear chemistry. Journal of Chemical Education, 85 (9), 1220-1221. Doi: 10.1021/ed085p1220
  • Grünberg, T. (2005). Felsefe ve felsefi mantık. İstanbul: Yapı Kredi Yayınları.
  • Hall. M.B. (1968). The history of the concept of element. In D. Stephen and L. Cardwell (Eds.), John Dalton and the progress of science (pp. 21–39). New York: Manchester Universty Press.
  • Hendry, R.F. (2012a). Elements. In D. M. Gabbay, P. Thagard, & John Woods. (Gen.Eds.), R, F. Hendry, P. Needham & A.I. Woody (Vol.Eds.). Handbook of the philosophy of science, philosophy of chemistry (V.6), (pp.255-265). Amsterdam: North Holland- Elsevier.
  • Hendry, R.F.(2012b). Reduction, emergence and physicalism. In D. M. Gabbay, P. Thagard and John Woods. (Gen.Eds.), R, F. Hendry, P. Needham and A.I. Woody (Vol.Eds.) Handbook of the Philosophy of Science, Philosophy of Chemistry (V.6), (pp.367-386). Amsterdam: North Holland- Elsevier
  • Hettema, H., & Kuipers, T. A. F. (1988). The periodic table – its formalization, status, and relation to atomic theory. Erkenntnis 28, 387–408. [Available online at: http://www.rug.nl/research/portal/files/3378064/485.pdf.], Retrieved on April 05, 2016.
  • Hoffman, A., & Hennessy, M. (2018). The people periodic table: A framework for engaging introductory chemistry students. J.Chem.Educ.,95 (2), 281-285. Doi:10.1021/acs.jchemed.7b00226
  • International Union of Pure and Applied Chemistry. (2016). IUPAC periodic table of the elements. [Available on line at: https://iupac.org/what-we-do/periodic-table-of-elements/], Retrieved on August 150 2017.
  • Izquierdo-Aymerich, M., & Aduriz-Bravo, A. (2009). Physical construction of the chemical atom: is it convenient to go all the way back? Science & Education, 18 (3-4),443-455. Doi:10.1007/s11191-008-9156-4
  • Joaquin, A., Jose’ Maria, O.M., & Almoraima, M.L. (2015). Students' perceptions about the use of educational games as a tool for teaching the periodic table of elements at the high school level. Journal of Chemical Education 92 (2), 278-285.
  • Johnson, M.A., & Lawson, A.E. (1998). What are the relative effects of reasoning ability and prior knowledge on biology achievement in expository and inquiry classes. Journal of research in science teaching, 35 (1), 89-103.
  • Karol, P.J., Barber, C.R., Sherrill, M.B., Vardaci, E., and Yamazaki, T. (2016). Discovery of the element with atomic number Z = 118 completing the 7th row of the periodic table (IUPAC Technical Report). https://doi.org/10.1515/pac-2015-0501, Retrieved on May 01, 2017.
  • Katz, G. (2007). Post mendeleevian evolution of the periodic table? Periodic round table. [Available on line at: http://www.periodicroundtable.com/PostMendeleevian_GKatz.pdf.], Retrieved on October 14, 2011.
  • Katz, G. (2001). An eight-period table for the 21st century. Chemical Educator, 6(6),324-332.
  • Laing. M. (2001). Periodic Patterns. Journal of Chemical Education, 78 (7), 877. Doi: 10.1021/ed078p877.1
  • Lawson, A.E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25 (11), 1387-1408.
  • Lawson, A.E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry. Journal of Reseach in Science Teaching, 42 (6), 716-740.
  • Lawson, A.E., Banks, D. L., and Logvin, M. (2007). Self-efficacy, reasoning ability, and achievement in college biology. Journal of Research in Science Teaching, 44 (5), 706724.
  • Lawson, A.E. (2000). The generality of hypothetico-deductive reasoning: making scientific thinking explicit. The American Biology Teacher, 62(7),482-495.
  • Matthews, M.R. (2015). Science Teaching: The Contribution of History and Philosophy of Science (20th anniversary revised and expanded edition). New York: Routledge
  • Millî Eğitim Bakanlığı. (2009). Ortaöğretim kimya 10 ders kitabı. İstanbul: Devlet kitaplar (1355).
  • Milli Eğitim Bakanlığı. (2013). Ortaöğretim kimya dersi (9,10,11 ve 12. Sınıflar) öğretim programı. Ankara: Talim ve Terbiye Kurulu Başkanlığı.
  • Milli Eğitim Bakanlığı. (2017). Ortaöğretim kimya dersi (9,10,11 ve 12. Sınıflar) öğretim programı. Ankara: Talim ve Terbiye Kurulu Başkanlığı.
  • Musgrave, A. (2009). Popper and hypothetico-deductivism. In S. Hartmann and J. Woods. (Eds.), D.M. Gabbay, P. Thagard and J. Woods (Gen.Eds.), Handbook of The History of Logic. Volume 10: Inductive Logic. (pp.205-235). Elsevier BV.
  • Niaz M., Rodriguez M.A., & Brito A. (2004). An appraisal of Mendeleev’s contribution to the development of the periodic table. Studies in History and Philosophy of Science, 35 (2), 271-282. Doi: 10.1016/j.shpsa.2003.12.014
  • Niaz, M. (2016). History and philosophy of science as a guide to understanding nature of science. Revista Científica, 24, 7-16. doi: 10.14483/udistrital.jour.RC.2016.24.a1
  • Ostrovsky, V. N. (2001). What and how physics contributes to understanding the periodic law. Foundations of Chemistry 3(2), 145–182. Doi:10.1023/A:1011476405933
  • Peirce, C. (1982). Writings of Charles S. Peirce. Vol.1, Bloomington: Indiana University Press
  • Popper, K. R. (2003). Bilimsel araştırmanın mantığı. (Çev.İ. Aka ve İ. Turan). İstanbul: Yapı Kredi Yayınları. (Eserin orjinali 1934’de yayımlandı).
  • Post, D.E. (2016). The Periodic Table of Elements, an Early Example of "Big Data". Computing in Science & Engineering, 18 (3), 4-7. Doi: 10.1109/MCSE.2016.63
  • Rayner-Canham G. & T. Overton. (2002). Descriptive inorganic chemistry. New York: Freeman.
  • Rayner-Canham. G. (2000). Periodic patterns. Journal of Chemical Educaiton 77, (8), 1053. Doi: 10.1021/ed077p1053
  • Reedijk, J. (2018). Row 7 of the periodic table complete: Can we expect more new elements; and if so, when? Polyhedron 141, 1-4. doi: 10.1016/j.poly.2017.10.037
  • Reichenbach, H. (2006). Bilim felsefesinin doğuşu. (Çev.C. Yıldırım), Ankara: Bilgi Yayınevi. (Eserin orjinali 1951’de yayımlandı).
  • Restrepo, G., Mesa, H., Llanos E., & Villaveces, J. L. (2004). Topological study of the periodic system. Journal of Chemical Information and Computer Sciences. 44(1), 6875.
  • Restrepo, G., & Pachón, L.A. (2007). Mathematical aspects of the periodic law. Foundations of Chemistry, 9(2), 189-214.
  • Rothchild, I. (2006). Induction, deduction and the scientific method: An eclectic overview of the practice of science. By the Society for the Study of Reproduction, Inc. [Available online at: http://www.ssr.org/Induction.shtml.], Retrieved on March 25, 2010.
  • Sarıtaş, D. (2013). Periyodik sistemin öğretim sürecinde oluşan rasyonel bilginin; üretimi, epistemolojisi ve metodolojisi. Yayımlanmamış doktora tezi. Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Sarıtaş, D., & Tufan Y. (2012). Periyodik sistemin öğretiminde epistemolojik bilgi üretme yöntemlerinden biri olan tümevarımın kullanımı. Kastamonu Eğitim Dergisi, 20(1), 203-218.
  • Sarıtaş, D., & Tufan Y. (2013). Periyodik sistemin epistemolojik niteliğine yönelik anlayışlar. 3.Ulusal Kimya Eğitimi Kongresi, Karadeniz Teknik Üniversitesi, Trabzon.
  • Scerri, E., & Restrepo, G. (Eds). (2018). Mendeleev to Oganesson: A Multidisciplinary Perspective on the Periodic Table. New York, NY: Oxford University Press.
  • Scerri, E. (1994). Has chemistry been at least approximately reduced to quantum mechanics? In D. Hull, M. Forbes, and R. Burian (Eds.). PSA,1994: Proceedings of the Biennial Meeting of the Philosophy of Science Association (pp. 160-170). Universty of Chicago Press
  • Scerri, E. (1996). Stephen Brush, the periodic table and the nature of chemistry. In: P. Janich, & N. Psarros (Eds.), Die sprache der chemie (pp. 169-176). Würzburg: Königshausen & Neumann.
  • Scerri, E. (1998). How good is the quantum mechanical explanation of the periodic system? Journal of Chemical Education, 75(11), 138485. Doi: 10.1021/ed075p1384
  • Scerri, E. (2001). The new philosophy of chemistry and its relevance to chemical education. Chemistry Education: Research and Practıce In Europe, 2 (2), 165-170.
  • Scerri, E. (1991). The electronic configuration model, quantum mechanics and reduction. The British Journal for the Philosophy of Science,42(3), 309-325.
  • Scerri, E. (1997). Has the periodic table been successfully axiomatized? Erkenntnis,47(2), 229-243. doi: 10.1023/A:1005318720779
  • Scerri, E. (2007). The periodic table: its story and its significance. New York: Oxford University Press.
  • Schummer. J. (2004). Philosophie der chemie: rück- und ausblicke. Erscheint in K. Griesar (Hg.), Wenn der Geist die Materie küßt (s.1-12). Frankfurt: Harry Deutsch
  • Schurz, G. (2005). Bayesian H-D conrmation and structuralistic truthlikeness: discussion and comparison with the relevant-element and the content-part approach. In T. Kuipers and R. Festa (Eds.) Logics of Scientic Discovery (pp.141-159). Amsterdam: Rodopi.
  • Sprenger, J., (2011). Hypothetico-deductive confirmation. [Available online at: http://www.laeuferpaar.de/papers.html], Retrieved on December 22, 2011.
  • Tierney, J. (2008). Forecasting periodic trends: a semester-long team exercise for nonscience majors. Journal of Chemical Education, 85(9),1215-1217. Doi:10.1021/ed085p1215.
  • Tunalı, N. K., & Ökar, S. (1997). Anorganik kimya. Ankara: Gazi Üniversitesi Yayınları.
  • van Brakel, J. (2014). Philosophy of science and philosophy of chemistry. HYLE--International Journal for Philosophy of Chemistry 20(1), 11-57.
  • Wang S.G., & Schwarz. H.E.W. (2009). Icon of chemistry: the periodic system of chemical elements in the new century. Angewandte Chemie International Edition,48 (19), 3404-3415.
  • Wiediger, S.D. (2009). Implementing a computer program that captures students' work on customizable, periodic-system data assignments. Journal of Chemical Education, 86(10),1212-1215. Doi: 10.1021/ed086p1212.
  • Woelk, K. (2009). Matching element symbols with state abbreviations: a fun activity for browsing the periodic table of chemical elements. Journal of Chemical Education, 86(10),1205-1207. Doi: 10.1021/ed086p1205.
  • Yıldırım, C. (1985). Bilim felsefesi. İstanbul: Remzi Kitabevi.

Periyodik Yasa-Sistem İlişkisi Nasıl Kurulmalıdır? Kimya Öğretimine Bilim Tarihi ve Felsefesinden Çıkarımlar

Year 2019, , 27 - 53, 31.01.2019
https://doi.org/10.16986/HUJE.2018043649

Abstract

Elementlerin toplu olarak gösterildiği periyodik tablo elementleri tanımada bir giriş niteliğindedir ve kimya eğitimi açısından da önemlidir. Dünya genelinde birçok kimya öğretim programında periyodik tablonun etkili kullanımı kazanım temelinde amaçlanmaktadır. Ancak periyodik tablonun özellikleri dikkate alındığında bunları karşılayacak bir kullanım yolu veya yöntemine ilgili literatürde rastlamak mümkün değildir. Bu nedenle bu çalışmada amaç lise kimya ders kitaplarında pek rastlanmayan yönleri ile periyodik tablonun doğasına dikkatleri çekmek ve bu doğanın kimya eğitimi açısından avantaj olduğu düşüncesine bir kapı aralamaktır. Bu amaçla öncelikle periyodik tablonun tarihsel gelişim süreci ve bu günkü durumuna kısaca değinilmiş ve felsefi açıdan periyodik yasa, periyodik sistem, periyodik tablo kavramları irdelenmiştir. Ardından periyodik tablonun tarihsel gelişim sürecinin metodolojik ve epistemolojik yönleri ışığında özellikle periyodik tablonun etkili kullanımı için periyodik yasa ve periyodik sistem ilişkisi kimya eğitimi bağlamında tartışılmıştır. Bu tartışmada periyodik sistemin etkili kullanılması için doğası ile uyumlu olabilecek bir çıkarım türü olarak hipotetik-dedüktif yönteme dikkat çekilmiş ve son olarak oluşturulan bağlamda kimya eğitimine yönelik bazı önerilere yer verilmiştir.

References

  • Alexander, S.V., Sevcik, R.S., McGinty, R.L., & Schultz, L.D. (2008). Periodic table target: a game that introduces the biological significance of chemical element periodicity. Journal of Chemical Education, 85 (4), 516-517. Doi: 10.1021/ed085p516
  • Andrijko, A.A., & Lunk, H.J. (2018). The short form of mendeleev’s periodic table of chemical elements: toolbox for learning the basics of inorganic chemistry. a contribution to celebrate 150 years of the periodic table in 2019. ChemTexts 4, 4. https://doi.org/10.1007/s40828-018-0059-y
  • Aydın, A. (2008). Ortaöğretim Kimya Dersi Öğretim Programında Periyodik Sistem ile İlgili Kavramların Veriliş Sırasının İncelenmesi (A.B.D ve Türkiye Örneği). Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (1), 76-84. [Çevrim-içi: http://fbed.balikesir.edu.tr/index.php/dergi/article/view/307], Erişim tarihi,09.06.2016.
  • Ayvacı, H.Ş. & Bebek, G. (2017). 2013 yılında revize edilen fen bilimleri dersi öğretim programı’nda yer alan kazanımların incelenmesi: model oluşturma ve kullanma konusu. Hasan Ali Yücel Eğitim Fakültesi Dergisi 14-1 (24), 89-104.
  • Azizoğlu, N., Aslan, S., & Pekcan, S. (2015). The periodic system and teaching with analogies model: the effects of teaching method, gender and motivation on students’ achievement. Elementary Education Online, 14(2), 472-488. https://doi.org/ 10.17051/io.2015.39450, Retrieved on May 01, 2018.
  • Ben‐ Zvia, N., & Genuta, S. (1998). Uses and limitations of scientific models: the Periodic Table as an inductive tool. International Journal of Science Education, 20 (3),351-360. http://dx.doi.org/10.1080/0950069980200307
  • Bensaude, V.B. (1986). Mendeleev’s periodic system of chemical elements. British Journal for History of Science,9, 3–17.
  • Boyle, R. (2003). The Sceptical chymist, (The Classic 1661 Text). New York: Dover Publication. [Available online at: http://hti.osu.edu/sites/default/files/robert_boyle_skeptical_chemist.pdf.], Retrieved on January 22, 2012.
  • Brito, A. Rodrı ´guez, M.A., & Niaz, M. (2005). A reconstruction of development of the periodic table based on history and philosophy of science and its implications for general chemistry textbooks. Journal of Research In Science Teaching, 42(1), 84–111. Doi:10.1002/tea.20044
  • Chang, R., & Goldsby, K.A. (2014). Genel kimya, Ankara: Palme Yayıncılık
  • Çüçen, A. K. (2006). Mantık. Bursa: Asa Kitabevi.
  • Demir, Ö. (2000). Bilim felsefesi. Ankara: Vadi Yayınları.
  • Diener, L. & Moore, J.W. (2011). It's Elemental! Science Teacher, 78(5), 40-43. [Available online at: https://www.learntechlib.org/p/50517/], Retrieved on September 01, 2017.
  • Erduran S. (2017) Visualizing the Nature of Science: Beyond Textual Pieces to Holistic Images in Science Education. In: Hahl K., Juuti K., Lampiselkä J., Uitto A., Lavonen J. (eds) Cognitive and Affective Aspects in Science Education Research. Contributions from Science Education Research, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-58685-4_2
  • Erduran, S. (2007). Breaking the law: promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry,9 (3),247-263. doi:10.1007/s10698-007-9036-z
  • Erduran, S., Aduriz A.B., & Naaman, R.M., (2007). Developing epistemologically empowered teachers: examining the role of philosophy of chemistry in teacher education. Science & Education,16(9-10),975-989. Doi:10.1007/s11191-006-9072-4
  • Farrer, N. J., Monk, N., Heron, J., Lough, J.A., & Sadler, P. J. (2010). Chemistry, performance, and pedagogy: an interactive approach to periodic trends. Chemistry Education Research and Practice,11 (4),308-313. Doi: 10.1039/C0RP90011G
  • Firsching F. H. (1981). Anomalies in the periodic table. Journal of Chemical Education,58 (6),478. Doi: 10.1021/ed058p478
  • Fridgen, T.D. (2008). The correlation of binary acid strengths with molecular properties in firstyear chemistry. Journal of Chemical Education, 85 (9), 1220-1221. Doi: 10.1021/ed085p1220
  • Grünberg, T. (2005). Felsefe ve felsefi mantık. İstanbul: Yapı Kredi Yayınları.
  • Hall. M.B. (1968). The history of the concept of element. In D. Stephen and L. Cardwell (Eds.), John Dalton and the progress of science (pp. 21–39). New York: Manchester Universty Press.
  • Hendry, R.F. (2012a). Elements. In D. M. Gabbay, P. Thagard, & John Woods. (Gen.Eds.), R, F. Hendry, P. Needham & A.I. Woody (Vol.Eds.). Handbook of the philosophy of science, philosophy of chemistry (V.6), (pp.255-265). Amsterdam: North Holland- Elsevier.
  • Hendry, R.F.(2012b). Reduction, emergence and physicalism. In D. M. Gabbay, P. Thagard and John Woods. (Gen.Eds.), R, F. Hendry, P. Needham and A.I. Woody (Vol.Eds.) Handbook of the Philosophy of Science, Philosophy of Chemistry (V.6), (pp.367-386). Amsterdam: North Holland- Elsevier
  • Hettema, H., & Kuipers, T. A. F. (1988). The periodic table – its formalization, status, and relation to atomic theory. Erkenntnis 28, 387–408. [Available online at: http://www.rug.nl/research/portal/files/3378064/485.pdf.], Retrieved on April 05, 2016.
  • Hoffman, A., & Hennessy, M. (2018). The people periodic table: A framework for engaging introductory chemistry students. J.Chem.Educ.,95 (2), 281-285. Doi:10.1021/acs.jchemed.7b00226
  • International Union of Pure and Applied Chemistry. (2016). IUPAC periodic table of the elements. [Available on line at: https://iupac.org/what-we-do/periodic-table-of-elements/], Retrieved on August 150 2017.
  • Izquierdo-Aymerich, M., & Aduriz-Bravo, A. (2009). Physical construction of the chemical atom: is it convenient to go all the way back? Science & Education, 18 (3-4),443-455. Doi:10.1007/s11191-008-9156-4
  • Joaquin, A., Jose’ Maria, O.M., & Almoraima, M.L. (2015). Students' perceptions about the use of educational games as a tool for teaching the periodic table of elements at the high school level. Journal of Chemical Education 92 (2), 278-285.
  • Johnson, M.A., & Lawson, A.E. (1998). What are the relative effects of reasoning ability and prior knowledge on biology achievement in expository and inquiry classes. Journal of research in science teaching, 35 (1), 89-103.
  • Karol, P.J., Barber, C.R., Sherrill, M.B., Vardaci, E., and Yamazaki, T. (2016). Discovery of the element with atomic number Z = 118 completing the 7th row of the periodic table (IUPAC Technical Report). https://doi.org/10.1515/pac-2015-0501, Retrieved on May 01, 2017.
  • Katz, G. (2007). Post mendeleevian evolution of the periodic table? Periodic round table. [Available on line at: http://www.periodicroundtable.com/PostMendeleevian_GKatz.pdf.], Retrieved on October 14, 2011.
  • Katz, G. (2001). An eight-period table for the 21st century. Chemical Educator, 6(6),324-332.
  • Laing. M. (2001). Periodic Patterns. Journal of Chemical Education, 78 (7), 877. Doi: 10.1021/ed078p877.1
  • Lawson, A.E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25 (11), 1387-1408.
  • Lawson, A.E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry. Journal of Reseach in Science Teaching, 42 (6), 716-740.
  • Lawson, A.E., Banks, D. L., and Logvin, M. (2007). Self-efficacy, reasoning ability, and achievement in college biology. Journal of Research in Science Teaching, 44 (5), 706724.
  • Lawson, A.E. (2000). The generality of hypothetico-deductive reasoning: making scientific thinking explicit. The American Biology Teacher, 62(7),482-495.
  • Matthews, M.R. (2015). Science Teaching: The Contribution of History and Philosophy of Science (20th anniversary revised and expanded edition). New York: Routledge
  • Millî Eğitim Bakanlığı. (2009). Ortaöğretim kimya 10 ders kitabı. İstanbul: Devlet kitaplar (1355).
  • Milli Eğitim Bakanlığı. (2013). Ortaöğretim kimya dersi (9,10,11 ve 12. Sınıflar) öğretim programı. Ankara: Talim ve Terbiye Kurulu Başkanlığı.
  • Milli Eğitim Bakanlığı. (2017). Ortaöğretim kimya dersi (9,10,11 ve 12. Sınıflar) öğretim programı. Ankara: Talim ve Terbiye Kurulu Başkanlığı.
  • Musgrave, A. (2009). Popper and hypothetico-deductivism. In S. Hartmann and J. Woods. (Eds.), D.M. Gabbay, P. Thagard and J. Woods (Gen.Eds.), Handbook of The History of Logic. Volume 10: Inductive Logic. (pp.205-235). Elsevier BV.
  • Niaz M., Rodriguez M.A., & Brito A. (2004). An appraisal of Mendeleev’s contribution to the development of the periodic table. Studies in History and Philosophy of Science, 35 (2), 271-282. Doi: 10.1016/j.shpsa.2003.12.014
  • Niaz, M. (2016). History and philosophy of science as a guide to understanding nature of science. Revista Científica, 24, 7-16. doi: 10.14483/udistrital.jour.RC.2016.24.a1
  • Ostrovsky, V. N. (2001). What and how physics contributes to understanding the periodic law. Foundations of Chemistry 3(2), 145–182. Doi:10.1023/A:1011476405933
  • Peirce, C. (1982). Writings of Charles S. Peirce. Vol.1, Bloomington: Indiana University Press
  • Popper, K. R. (2003). Bilimsel araştırmanın mantığı. (Çev.İ. Aka ve İ. Turan). İstanbul: Yapı Kredi Yayınları. (Eserin orjinali 1934’de yayımlandı).
  • Post, D.E. (2016). The Periodic Table of Elements, an Early Example of "Big Data". Computing in Science & Engineering, 18 (3), 4-7. Doi: 10.1109/MCSE.2016.63
  • Rayner-Canham G. & T. Overton. (2002). Descriptive inorganic chemistry. New York: Freeman.
  • Rayner-Canham. G. (2000). Periodic patterns. Journal of Chemical Educaiton 77, (8), 1053. Doi: 10.1021/ed077p1053
  • Reedijk, J. (2018). Row 7 of the periodic table complete: Can we expect more new elements; and if so, when? Polyhedron 141, 1-4. doi: 10.1016/j.poly.2017.10.037
  • Reichenbach, H. (2006). Bilim felsefesinin doğuşu. (Çev.C. Yıldırım), Ankara: Bilgi Yayınevi. (Eserin orjinali 1951’de yayımlandı).
  • Restrepo, G., Mesa, H., Llanos E., & Villaveces, J. L. (2004). Topological study of the periodic system. Journal of Chemical Information and Computer Sciences. 44(1), 6875.
  • Restrepo, G., & Pachón, L.A. (2007). Mathematical aspects of the periodic law. Foundations of Chemistry, 9(2), 189-214.
  • Rothchild, I. (2006). Induction, deduction and the scientific method: An eclectic overview of the practice of science. By the Society for the Study of Reproduction, Inc. [Available online at: http://www.ssr.org/Induction.shtml.], Retrieved on March 25, 2010.
  • Sarıtaş, D. (2013). Periyodik sistemin öğretim sürecinde oluşan rasyonel bilginin; üretimi, epistemolojisi ve metodolojisi. Yayımlanmamış doktora tezi. Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Sarıtaş, D., & Tufan Y. (2012). Periyodik sistemin öğretiminde epistemolojik bilgi üretme yöntemlerinden biri olan tümevarımın kullanımı. Kastamonu Eğitim Dergisi, 20(1), 203-218.
  • Sarıtaş, D., & Tufan Y. (2013). Periyodik sistemin epistemolojik niteliğine yönelik anlayışlar. 3.Ulusal Kimya Eğitimi Kongresi, Karadeniz Teknik Üniversitesi, Trabzon.
  • Scerri, E., & Restrepo, G. (Eds). (2018). Mendeleev to Oganesson: A Multidisciplinary Perspective on the Periodic Table. New York, NY: Oxford University Press.
  • Scerri, E. (1994). Has chemistry been at least approximately reduced to quantum mechanics? In D. Hull, M. Forbes, and R. Burian (Eds.). PSA,1994: Proceedings of the Biennial Meeting of the Philosophy of Science Association (pp. 160-170). Universty of Chicago Press
  • Scerri, E. (1996). Stephen Brush, the periodic table and the nature of chemistry. In: P. Janich, & N. Psarros (Eds.), Die sprache der chemie (pp. 169-176). Würzburg: Königshausen & Neumann.
  • Scerri, E. (1998). How good is the quantum mechanical explanation of the periodic system? Journal of Chemical Education, 75(11), 138485. Doi: 10.1021/ed075p1384
  • Scerri, E. (2001). The new philosophy of chemistry and its relevance to chemical education. Chemistry Education: Research and Practıce In Europe, 2 (2), 165-170.
  • Scerri, E. (1991). The electronic configuration model, quantum mechanics and reduction. The British Journal for the Philosophy of Science,42(3), 309-325.
  • Scerri, E. (1997). Has the periodic table been successfully axiomatized? Erkenntnis,47(2), 229-243. doi: 10.1023/A:1005318720779
  • Scerri, E. (2007). The periodic table: its story and its significance. New York: Oxford University Press.
  • Schummer. J. (2004). Philosophie der chemie: rück- und ausblicke. Erscheint in K. Griesar (Hg.), Wenn der Geist die Materie küßt (s.1-12). Frankfurt: Harry Deutsch
  • Schurz, G. (2005). Bayesian H-D conrmation and structuralistic truthlikeness: discussion and comparison with the relevant-element and the content-part approach. In T. Kuipers and R. Festa (Eds.) Logics of Scientic Discovery (pp.141-159). Amsterdam: Rodopi.
  • Sprenger, J., (2011). Hypothetico-deductive confirmation. [Available online at: http://www.laeuferpaar.de/papers.html], Retrieved on December 22, 2011.
  • Tierney, J. (2008). Forecasting periodic trends: a semester-long team exercise for nonscience majors. Journal of Chemical Education, 85(9),1215-1217. Doi:10.1021/ed085p1215.
  • Tunalı, N. K., & Ökar, S. (1997). Anorganik kimya. Ankara: Gazi Üniversitesi Yayınları.
  • van Brakel, J. (2014). Philosophy of science and philosophy of chemistry. HYLE--International Journal for Philosophy of Chemistry 20(1), 11-57.
  • Wang S.G., & Schwarz. H.E.W. (2009). Icon of chemistry: the periodic system of chemical elements in the new century. Angewandte Chemie International Edition,48 (19), 3404-3415.
  • Wiediger, S.D. (2009). Implementing a computer program that captures students' work on customizable, periodic-system data assignments. Journal of Chemical Education, 86(10),1212-1215. Doi: 10.1021/ed086p1212.
  • Woelk, K. (2009). Matching element symbols with state abbreviations: a fun activity for browsing the periodic table of chemical elements. Journal of Chemical Education, 86(10),1205-1207. Doi: 10.1021/ed086p1205.
  • Yıldırım, C. (1985). Bilim felsefesi. İstanbul: Remzi Kitabevi.
There are 76 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Davut Sarıtaş 0000-0002-5108-4801

Yüksel Tufan 0000-0003-3296-0228

Publication Date January 31, 2019
Published in Issue Year 2019

Cite

APA Sarıtaş, D., & Tufan, Y. (2019). Periyodik Yasa-Sistem İlişkisi Nasıl Kurulmalıdır? Kimya Öğretimine Bilim Tarihi ve Felsefesinden Çıkarımlar. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 34(1), 27-53. https://doi.org/10.16986/HUJE.2018043649