Research Article
BibTex RIS Cite

Research on the Relationship Between Big Data, Sustainable Supply Chain, and Firm Performance

Year 2025, Volume: 43 Issue: 3, 509 - 538, 26.09.2025
https://doi.org/10.17065/huniibf.1564122

Abstract

The rapid technological advancements and sustainability demands of today have compelled companies to reassess their strategic approaches to maintain their market positions, gain a competitive edge, and enhance long-term profitability. In this regard, companies must focus on big data (BD) investments to meet customer demands, optimize production processes, and improve the efficiency of their supply chains (SC). Additionally, developing strategies to integrate economic, environmental, and social sustainability practices into their SCs is essential. This study investigates the complex relationships between BD, sustainable supply chain (SSC), and firm performance (FP), with a particular focus on the mediating effect of SSC in this relationship. Within the scope of the research, Confirmatory Factor Analysis (CFA) was utilized to demonstrate that SSC is represented by three dimensions: economic (ED), environmental (EnD), and social (SD). According to the analysis results, it was found that BD has a limited direct impact on FP; however, SSC exhibits a full mediating effect in this relationship. This finding reveals that BD’s contribution to FP occurs indirectly through SSC, indicating that SSC serves as a critical intermediary that enhances and directs the impact of BD on FP.

References

  • Acar, Ö. E. (2018). Sürdürülebilir tedarik zinciri uygulamaları ve dış kaynak kullanımının işletme performansına etkisi üzerine bir araştırma. [Yayınlanmamış Doktora Tezi]. Selçuk Üniversitesi.
  • Ageron, B., Gunasekaran, A., & Spalanzani, A. (2012). Sustainable supply management: An empirical study. International Journal of Production Economics, 140(1), 168-182. https://doi.org/10.1016/j.ijpe.2011.04.007
  • Ahmad, H., Hanandeh, R., Raheem, F., Alazzawi, F., Al-Daradkah, A., Eldmrat, A., Ghaith, Y., & Darawsheh, S. (2023). The effects of big data, artificial intelligence, and business intelligence on e-learning and business performance: Evidence from jordanian telecommunication firms. International Journal of Data and Network Science, 7, 35-40. https://doi.org/10.5267/j.ijdns.2022.12.009
  • Aktan, E. (2018). Büyük veri: Uygulama alanları, analitiği ve güvenlik boyutu. Bilgi Yönetim Dergisi, 1(1), 1-22. https://doi.org/10.33721/by.403010
  • Akter, S., Wamba, S., Gunasekaran, A., Dubey, R., & Childe, S. (2016). How to ımprove firm performance using big data analytics capability and business strategy alignment?. International Journal of Production Economics, 182, 113-131. https://doi.org/10.1016/j.ijpe.2016.08.018
  • Ali, A., & Ahmed, S. (2022). Big data analytics and supply chain performance: the mediating role of supply chain capabilities and innovation. Management Science Letters, 12, 307-320. https://doi.org/10.5267/j.msl.2022.4.003
  • Al-Shorman, H., Eldahamsheh, M., Attiany, M., Al-Azzam, M., & Al-Ouran, A. (2023). Potential effects of smart ınnovative solutions for supply chain performance. Uncertain Supply Chain Management, 11, 103–110. https://doi.org/10.5267/j.uscm.2022.11.005
  • Ar, İ. M. (2009). Teknoparklarda yerleşik firmalar için yeniliği etkileyen faktörlerin belirlenmesi ve yeniliğin firma performansına etkisinin incelenmesi. [Yayınlanmış Doktora Tezi]. Karadeniz Teknik Üniversitesi.
  • Baah, C., & Jin, Z. (2019). Sustainable supply chain management and organizational performance: The intermediary role of competitive advantage. Journal of Management and Sustainability, 9(1), 119-131. https://doi.org/10.5539/jms.v9n1p119
  • Bag, S., Wood, L., Xu, L., Dhamija, P., & Kayikci, Y. (2020). Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. Resources, Conservation and Recycling, 153, 104559, 1-10. https://doi.org/10.1016/j.resconrec.2019.104559
  • Bayram, N. (2004). Sosyal bilimlerde SPSS ile veri analizi. Ezgi Kitabevi.
  • Bose, R. (2006). Understanding management data systems for enterprise performance management. Industrial Management, & Data Systems, 106(1), 43–59. https://doi.org/10.1108/02635570610640988
  • Brynjolfsson, E., & McAfee, A. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-68.
  • Büyüköztürk, Ş. (2020). Sosyal bilimler için veri analizi el kitabı: İstatistik, araştırma deseni, SPSS uygulamaları ve yorum. Pegem Akademi.
  • Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Routledge.
  • Can, A. (2019). SPSS ile bilimsel araştırma sürecinde nicel veri analizi. Pegem Akademi.
  • Carter, C. D. (1997). Doing Quantative Psychological Research: From Design To Report, Psychology Press.
  • Carter, C. R., & Jennings, M. M. (2002). Logistics social responsibility: An ıntegrative framework. Journal of Business Logistics, 23(1), 145-180. https://doi.org/10.1002/j.2158-1592.2002.tb00020.x
  • Carter, C. R., & Rogers, D. (2008). A framework of sustainable supply chain management: Moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360-387. https://doi.org/10.1108/09600030810882816
  • Chae, B., Sheu, C., & Olson, D. (2014a). The ımpact of supply chain analytics on operational performance: A resource-based view. International Journal of Production Research, 52(6), 4695-4710. https://doi.org/10.1080/00207543.2013.861616
  • Chae, B., Yang, C., Olson, D., & Sheu, C. (2014b). The ımpact of advanced analytics and data accuracy on operational performance: A contingent resource based theory (RBT) Perspective. Decision Support Systems, 59, 119–126. https://doi.org/10.1016/j.dss.2013.10.012
  • Chalmeta, R., & Santos-Deleón, N. J. (2020). Sustainable supply chain in the era of Industry 4.0 and big data: a systematic analysis of literature and research. Sustainability, 12(10), 4108. https://doi.org/10.3390/su12104108
  • Chardine-Baumann, E., & Botta-Genoulaz, V. (2014). A framework for sustainable performance assessment of supply chain management practices. Computers & Industrial Engineering, 76, 138-147. https://doi.org/10.1016/j.cie.2014.07.029
  • Chen, H., Chiang, R., & Storey, V. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503
  • Chen, Daniel vd. (2015). How the use of big data analytics affects value creation in supply chain management. Journal of Management Information Systems, 32(4), 4–39. https://doi.org/10.1080/07421222.2015.1138364
  • Chien, M., & Shih, L. (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic ındustry and their relation to organizational performances. International Journal of Environmental Science and Technology, 4(3), 383-394.
  • Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the Association for Computing Machinery, 13(6), 377-387. https://dl.acm.org/doi/pdf/10.1145/362384.362685
  • Çağlayan, N. İ. (2022). Sürdürülebilir tedarik zinciri yönetiminin kurumsal itibar ve stratejik rekabete etkileri [Yayınlanmamış Yüksek Lisans Tezi]. Bahçeşehir Üniversitesi Lisansüstü Eğitim Enstitüsü.
  • Çokluk, Ö., Büyüköztürk, Ş. ve Şekercioğlu, G. (2012). Sosyal bilimler için çok değişkenli istatistik SPSS ve LİSREL uygulamaları. Pegem Akademi.
  • Daft, R. L. (1995). Organization theory and design. West Publishing Company.
  • Das D. (2018). The ımpact of sustainable supply chain management practices on firm performance: Lessons from Indian organizations. Journal of Cleaner Production, 203(1), 1-55. https://doi.org/10.1016/j.jclepro.2018.08.250
  • DeVellis, R. F. (2014). Ölçek Geliştirme Kuram ve Uygulamalar. Nobel Yayın Dağıtım.
  • Dubey, R., Gunasekaran, A., Childe, S., Papadopoulos, T., Luo, Z., Wamba, S. F., Roubaud, D. (2017). Can big data and predictive analytics ımprove social and environmental sustainability?. Technological Forecasting and Social Change, 144, 534-545. https://doi.org/10.1016/j.techfore.2017.06.020
  • Dubey, R., Jeble, S., Childe, S., Papadopoulos, T., Roubaud, D., Prakash, A. (2018). Impact of big data and predictive analytics capability on supply chain sustainability. The International Journal of Logistics Management, 29(2), 513–538. https://doi.org/10.1108/IJLM-05-2017-0134
  • Dubey, R., Gunasekaran, A., Childe, S., Papadopoulos, T., Luo, Z., Wamba, S. & Roubaud, D. (2019). Can big data and predictive analytics ımprove social and environmental sustainability?. Technological Forecasting and Social Change, 144, 534-545. https://doi.org/10.1016/j.techfore.2017.06.020
  • Dülgeroğlu, İsmail (2008). Tüketici değerlerinin pazarlamadaki yeri ve genç tüketiciler üzerine bir araştırma. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 28(2), 71-92. http://hdl.handle.net/11452/17934
  • Ektesaby, M. (2018). Determınıng the ımportance of sustaınable supply chaın management and its contribution to competitive advantage of logistic firms. [Yayınlanmamış yüksek lisans tezi]. İstanbul Teknik Üniversitesi.
  • Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: Impact on firm performance. Management Decision, 57(8), 923-1936. https://doi.org/10.1108/MD-07-2018-0825
  • Fidell, L. S, & Tabachnick, B. G. (2015). Çok değişkenli istatistiklerin kullanımı (M. Baloğlu, Çev. Ed.). Nobel Akademik Yayıncılık.
  • Field, A. (2016). Discovering statistics using IBM SPSS statistics. Sage Publications.
  • Gandomi, A., & Haider, M. (2015). Beyond the hype: big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
  • Gani, M.O., Yoshi, T., Rahman, M.S. (2022). Optimizing firm’s supply chain resilience in data-driven business environment. Journal of Global Operations and Strategic Sourcing, 16(1). https://doi.org/10.1108/JGOSS-02-2022-0013
  • Ge, X., & Jackson, J. (2014). The big data application strategy for cost reduction in automotive ındustry. Society of Automotive Engineers International Journal of Commercial Vehicles, 7(2), 588–598. https://doi.org/10.4271/2014-01-2410
  • Geissdoerfer, M., Morioka, S.N., Carvalho, M., & Evans, S. (2018). Business models and supply chains for the circular economy. Journal of Cleaner Production, 190, 712-721. https://doi.org/10.1016/j.jclepro.2018.04.159
  • George, D., & Mallery, P. (2010). SPSS for windows step by step: A simple guide and reference. Taylor & Francis.
  • Giannakis, M., & Louis, M. (2016). A multi-agent based system with big data processing for enhanced supply chain agility. Journal of Enterprise Information Management, 29(5), 706-727. https://doi.org/10.1108/JEIM-06-2015-0050
  • Giudice, M., Chierici, R., Mazzucchelli, A., & Fiano, F. (2020). Supply chain management in the era of circular economy: The moderating effect of big data. The International Journal of Logistics Management, 32(2), 337-356. https://doi.org/10.1108/IJLM-03-2020-0119
  • Gogia, S., Barnes, M., Evelson, B., Hopkins, B., Kisker, H., Yuhanna, N., Anderson, D., & Malhotra, R. (2012). The big deal about big data for customer engagement business: leaders must lead big data ınitiatives to derive value, forrester research. http://www.iab.fi/media/tutkimus-matskut/130822_forrester_the_big_deal_about_big_data.pdf
  • Golicic, S. L. and Smith, C. D. (2013). A meta-analysis of environmentally sustainable supply chain management practices and firm performance. Journal of Supply Chain Management, 49(2), 78-95. https://doi.org/10.1111/jscm.12006
  • Govindan, K., Cheng, T., Mishra, N., & Shukla, N. (2018). Big data analytics and application for logistics and supply chain management. Transportation Research Part E: Logistics and Transportation Review, 114, 343–349. https://doi.org/10.1016/j.tre.2018.03.011
  • Guide, V.D.R., & Van Wassenhove, L.N. (2009). The evolution of closed-loop supply chain research. Operations Research, 57(1), 10-18. https://doi.org/10.1287/opre.1080.0628
  • Gunasekaran, A., Tiwari, M., Dubey, R., & Wamba, S. (2016). Big data and predictive analytics applications in supply chain management. Computers & Industrial Engineering, 101, 525-527. https://doi.org/10.1016/j.cie.2016.10.020
  • Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S., Childe, S., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004
  • Gupta, M., & George, JF. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004
  • Gürbüz, S. (2021). AMOS ile yapısal eşitlik modellemesi: temel ilkeler ve uygulamalı analizler. Seçkin Yayıncılık. Hair, JF. (2010). Multivariate data analysis. Prentice Hall.
  • Hassini, E., Surti, C., & Searcy, C. (2012). A literature review and a case study of sustainable supply chains with a focus on metrics. International Journal of Production Economics, 140(1), 69-82. https://doi.org/10.1016/j.ijpe.2012.01.042
  • Hu, L., & Basiglio, A. (2023). A multiple-case study on the adoption of customer relationship management and big data analytics in the automotive ındustry. The Total Quality Management Journal, 36(9), 1-21. https://doi.org/10.1108/TQM-05-2023-0137
  • Huang, C. K., Wang, T., & Huang, TY. (2020). Initial evidence on the ımpact of big data ımplementation on firm performance. Information Systems Frontiers, 22, 475-487. https://doi.org/10.1007/s10796-018-9872-5
  • Jabbour, CJC., Fiorini, P., Ndubisi, N., Queiroz, M., & Piato, E. (2020). Digitally-enabled sustainable supply chains in the 21st century: a review and a research agenda. Science of The Total Environment, 725, 138177, 1-14. https://doi.org/10.1016/j.scitotenv.2020.138177
  • Jiang, X., Yang, Y., & Luo, J. (2019). Big data applications in Chinese white spirits sustainable supply chain management, proceedings of the twelfth ınternational conference on management science and engineering management. Lecture Notes on Multidisciplinary Industrial Engineering, 1515-1527. https://doi.org/10.1007/978-3-319-93351-1_119
  • Karaboğa, T. ve Zehir, C. (2020). Büyük verinin etkin yönetiminde stratejik uyum ve veri odaklı kültür. IBAD Sosyal Bilimler Dergisi, 8, 63-76. https://doi.org/10.21733/ibad.717117
  • Karaboğa, T., Zehir, C., Tatoglu, E., Karaboğa, A, & Bouguerra, A. (2023). Big data analytics management capability and firm performance: the mediating role of data-driven culture. Review of Managerial Science, 17, 2655-2684. https://doi.org/10.1007/s11846-022-00596-8
  • Karagöz, Y. (2017). SPSS AMOS uygulamalı nitel-nicel-karma bilimsel araştırma yöntemleri ve yayın etiği, Nobel Akademik Yayıncılık.
  • Karahan, K. S. (2023). Rekabet stratejilerinin firma performansına etkisinde liderliğin aracılık rolü. [Yayınlanmamaış doktora tezi]. Van Yüzüncü Yıl Üniversitesi.
  • Karakaş, B. ve Ak R. (2003). Kamu yönetiminde performans yönetimi önemli midir?. Kamu yönetiminde kalite 3. ulusal kongresi bildirileri, Ankara: TODAİE Yayınları, No:319, 337-351.
  • Karaman, H., Atar, B. ve Aktan, D. (2017). Açımlayıcı faktör analizinde kullanılan faktör çıkartma yöntemlerinin karşılaştırılması. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 37(3), 1173-1193. https://doi.org/10.17152/gefad.309356
  • Khine, P. P., & ve Shun, WZ. (2017). Big data for organizations: A review. Journal of Computer and Communications, 5, 40-48. https://doi.org/10.4236/jcc.2017.53005
  • Koplin, J., suering, S., & Mesterharm, M. (2007). Incorporating sustainability into supply management in the automotive ındustry–the case of the Volkswagen AG. Journal of Cleaner Production, 15(11-12), 1053-1062. https://doi.org/10.1016/j.jclepro.2006.05.024
  • Lambert, DM., & Cooper, MC. (2000). Issues in supply chain management. Industrial Marketing Management, 29(1), 65-83. https://doi.org/10.1016/S0019-8501(99)00113-3
  • Lii, P., & Kuo, F. (2016). Innovation-oriented supply chain integration for combined competitiveness and firm performance. International Journal of Production Economics, 174, 142–155. https://doi.org/10.1016/j.ijpe.2016.01.018
  • Liu, X., Yang, J., Qu, S., Wang, L., Shishime, T., & Bao, C. (2012). Sustainable production: Practices and determinant factors of green supply chain management of Chinese companies. Business Strategy and the Environment, 21(1), 1–16. https://doi.org/10.1002/bse.705
  • Mani, V., Delgado, C., Hazen, B., & Patel, P. (2017). Mitigating supply chain risk via sustainability using big data analytics: evidence from the manufacturing supply chain. Sustainability, 9(4), 608. https://doi.org/10.3390/su9040608
  • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburg, C., & Byers, A.H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
  • Moeuf, A., Pellerin, R., Lamouri, S., Giraldo, ST., & Barbaray, R. (2018). The industrial management of SMEs in the era of Industry 4.0. International Journal of Production Researh, 56(3), 1118–1136. https://doi.org/10.1080/00207543.2017.1372647
  • Monye, SI., Afolalu, A. S., Lawal, L. S., Oluwatoyin, O. A., Adeyemi, A. G., Ughapu, EI., & Adegbenjo, A. (2023). Impact of Industry (4.0) in Automobile Industry. Environment, Energy and Earth Sciences Web of Conferences, 1-21. https://doi.org/10.1051/e3sconf/202343001222
  • Neaga, I., Liu, S., Xu, L., Chen, H., Hao, Y. (2015). Cloud enabled big data business platform for logistics services: a research and development agenda. Lecture Notes in Business Information Processing, 22–33. https://doi.org/10.1007/978-3-319-18533-0_3
  • Neely, A., Gregory, M., & Platts, K. (2005). Performance measurement system design: a literature review and research agenda. International Journal of Operations & Production Management, 25(12), 1228-1263. https://doi.org/10.1108/01443570510633639
  • Nikishina, L. B. (2023). Industry 4.0: History of emergence, development, prospects of transformation into Industry 5.0. International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies, 458, 1-8. https://doi.org/10.1051/e3sconf/202345806023
  • Nisar, Q. A., Haider, S., Ameer, I., Hussain, M. S., Gill, S. S., & Usama, A. (2022) Sustainable supply chain management performance in post COVID-19 era in an emerging economy: A big data perspective. International Journal of Emerging Markets, 18(12), 5900-5920. https://doi.org/10.1108/IJOEM-12-2021-1807
  • Novitasari, M., & Agustia, D. (2021). Green supply chain management and firm performance: The mediating effect of green ınnovation. Journal of Industrial Engineering and Management, 14(2), 391-403. https://doi.org/10.3926/jiem.3384
  • Oğuz, A. (2022). Tedarik zinciri entegrasyonu ve dijitalleşmenin performansa etkisinde alıcı-tedarikçi risk yönetiminin aracı rolü. [Yayınlanmış doktora tezi]. Karadeniz Teknik Üniversitesi.
  • Olsen, T. L., & Tomlin, B. (2019). Industry 4.0: Opportunities and challenges for operations management. Manufacturing & Service Operations Management, 22(1), 113-122. https://doi.org/10.1287/msom.2019.0796
  • Oncioiu, H. I., Bunget, O., Türkeş, M. C., Capuşneanu, S., Topor, S. I., Tamaş, A. S., Rakoş, I. S. & Hint, S. (2019). The ımpact of big data analytics on company performance in supply chain management. Sustainability, 11(18), 4864. https://doi.org/10.3390/su11184864
  • Oracle, (2012). Big data for the enterprise, redwood shores, ca: Oracle. 19.12.2020 tarihinde https://www.oracle.com/technetwork/database/bi-datawarehousing/wp-big-data-with-oracle-521209.pdf adresinden alınmıştır.
  • Ortas, E., Moneva, J. M., & Etxeberria, IA. (2014). Sustainable supply chain and company performance. Supply Chain Management: An International Journal, 19(3), 332–350. https://doi.org/10.1108/SCM-12-2013-0444
  • Özkan, OS. ve Omay, T. (2019). Psikolojik sermayenin bireysel performans üzerindeki etkisinde birey-örgüt uyumunun aracılık rolü: Vakıf üniversitelerindeki öğretim üyelerine yönelik bir araştırma. İşletme Araştırmaları Dergisi, 11(2), 743-757. https://doi.org/10.20491/isarder.2019.633
  • Pancaroğlu, S. (2023). Çevik üretimin sürdürülebilirlik performansına etkisinde ürün ve süreç inovasyonunun aracılık rolü: Türkiye hazır giyim sektörü üzerine bir araştırma. [Yayınlanmış doktora tezi]. Karadeniz Teknik Üniversitesi.
  • Parast, M. M. (2020).The impact of R&D investment on mitigating supply chain distruptions: Empirical evidence from U.S. firms. International Journal of Production Economics, 227, 1-15. https://doi.org/10.1016/j.ijpe.2020.107671
  • Sanders, N. R. (2016). How to use big data to drive your supply chain. California Management Review, 58(3), 26-48. https://doi.org/10.1525/cmr.2016.58.3.26
  • Schoenherr, T., & Speier-Pero, C. (2015). Data science, predictive analytics, and big data in supply chain management: current state and future potential. Journal of Business Logistics, 36(1), 120–132. https://doi.org/10.1111/jbl.12082
  • Seddon, J. J, & Currie, W. L. (2017). A model for unpacking big data analytics in high-frequency trading. Journal of Business Research, 70, 300-307. https://doi.org/10.1016/j.jbusres.2016.08.003
  • Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710. https://doi.org/10.1016/j.jclepro.2008.04.020
  • Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management. Decision Support Systems, 54, 1513-1520. https://doi.org/10.1016/j.dss.2012.05.053
  • Silva, G. M., Gomes, P. J., & Sarkis, J. (2019). The role of innovation in the implementation of green supply chain management practices. Business Strategy and the Environment, 28(5), 819-832. https://doi.org/10.1002/bse.2283
  • Sohn, S. Y., Joo, Y. G., & Han, H. (2007). Structural equation model for the evaluation of national funding on R&D project of SMEs in consideration with MBNQA criteria. Evaluation and Program Planning, 30, 10-20. https://doi.org/10.1016/j.evalprogplan.2006.10.002
  • Stevens, G. (1989). Integrating the supply chain. International Journal of Physical Distribution & Materials Management, 19(8), 3–8. https://doi.org/10.1108/EUM0000000000329
  • Syed, M. W., Li, J. Z., Junaid, M., Ye, X., Ziaullah, M. (2019). An empirical examination of sustainable supply chain risk and ıntegration practices: a performance-based evidence from Pakistan. Sustainability, 11(9), 1-21. https://doi.org/10.3390/su11195334
  • Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. International Journal of Logistics Research and Applications, 9(1), 33-45. https://doi.org/10.1080/13675560500405584
  • Thanabalan, P. Vafaei-Zadeh, A. Hanifah, & Ramayah T. (2024). Big data analytics adoption in manufacturing companies: the contingent role of data-driven culture. Information systems Frontiers. https://doi.org/10.1007/s10796-024-10491-0
  • Uladi, A. İ. ve Arı, ES. (2023). Büyük veri, büyük veri analizi ve uygulama alanları. Yönetim Bilişim Sistemleri Dergisi, 9(1), 1-14.
  • Vachon, S., & Klassen, R. D. (2008). Environmental management and manufacturing performance: The role of collaboration in the supply chain. International Journal of Production Economics, 111(2), 299-315. https://doi.org/10.1016/j.ijpe.2006.11.030
  • Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big ımpact: findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031
  • Wamba, S. F., Gunasekaran, A., Akter, S., Ren, SJ., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: effects of dynamic capabilities. Journal of Business Research, 70, 356-365. https://doi.org/10.1016/j.jbusres.2016.08.009
  • Wang, G., Gunasekaran, A., Ngai, EWT., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: certain ınvestigations for research and applications. International Journal of Production Economics, 176, 98-110. https://doi.org/10.1016/j.ijpe.2016.03.014
  • White, M. (2012). Digital workplaces: vision and reality. Business Information Review, 29(4), 205-214. https://doi.org/10.1177/0266382112470412
  • Wolff, J. A., & Pett, TL. (2006). Small-firm performance: Modeling the role of product and process ımprovements. Journal of Small Business Management, 44(2), 268-284. https://doi.org/10.1111/j.1540-627X.2006.00167.x
  • Yadegaridehkordi, E., Nilashi, M., Shuib, L., Nasir, M., Asadi, S., Samad, S., Awang, N. (2019). The impact of big data on firm performance in hotel industry. Electronic Commerce Research and Applications, 40, 100921, 1-33. https://doi.org/10.1016/j.elerap.2019.100921
  • Yalabık, B., & Fairchild, R. J. (2011). Customer, regulatory, and competitive pressure as drivers of environmental innovation. International Journal of Production Economics, 131(2), 288-296. https://doi.org/10.1016/j.ijpe.2011.01.020
  • Yamin, M. A. (2021). Investigating the drivers of supply chain resilience in the wake of the COVID-19 pandemic: Empirical evidence from an emerging economy. Sustainability, 13, 1-16. https://doi.org/10.3390/su132111939
  • Yıldız, B., & Çetindaş, A. (2019). The mediating role of supply chain agility in the effect of strategic resource usage on the company performance. Business & Management Studies: An International Journal, 6(4), 878-897. https://doi.org/10.15295/bmij.v6i4.379
  • Yımam, O. M. (2024). Evaluatıng the relatıonshıp among marketıng agılıty, entrepreneurıal marketing, and fırm performance ın the dıgıtal era. Doktora Tezi, Ondokuz Mayıs Unıversıty Instıtute Of Graduate Studıes Department Of Busıness Admınıstratıon.
  • Zhou, M., Qiao, Y., Liu, B., Vogel-Heuser, B., & Kim, H. (2023). Machine learning for ındustry 4.0. IEEE Robotics & Automation Magazine, 30(2), 8-9. https://doi.org/10.1109/MRA.2023.3266618
  • Zehir, C., & Bilgetürk, M. (2022). Büyük veri analitiği yeteneği ve firma performansı ilişkisi: Firma büyüklüğünün düzenleyici rolü. Yıldız Sosyal Bilimler Enstitüsü Dergisi, 6(2), 62-73. https://doi.org/10.14744/ysbed.2022.00019
  • Zhu, Q., & Sarkis, J. (2004). Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. Journal of Operations Management, 22(3), 265-289. https://doi.org/10.1016/j.jom.2004.01.005
  • Zink, K., Steimle, U., & Fischer, K. (2008). Human factors, business excellence and corporate sustainability: Differing perspectives, joint objectives. Corporate Sustainability as a Challenge for Comprehensive Management, 3-18. https://doi.org/10.1007/978-3-7908-2046-1_1

Büyük Veri, Sürdürülebilir Tedarik Zinciri ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma

Year 2025, Volume: 43 Issue: 3, 509 - 538, 26.09.2025
https://doi.org/10.17065/huniibf.1564122

Abstract

Günümüzde yaşanan hızlı teknolojik gelişmeler ve sürdürülebilirlik talepleri, firmaların pazardaki konumlarını koruyabilmeleri, rekabet avantajı elde edebilmeleri ve uzun vadede karlılıklarını artırabilmeleri için stratejilerini yeniden değerlendirmelerini zorunlu hale getirmiştir. Bu doğrultuda firmaların, müşteri taleplerini karşılamak, üretim süreçlerini optimize etmek ve tedarik zincirlerini (TZ) daha verimli hale getirebilmek amacıyla büyük veri (BV) yatırımlarına odaklanmaları ve ekonomik, çevresel ve sosyal sürdürülebilirlik uygulamalarını TZ’ye entegre etmek için stratejiler geliştirmeleri önemlidir. Bu çalışmada, BV, sürdürülebilir tedarik zinciri (STZ) ve firma performansı (FP) arasındaki karmaşık ilişkiler araştırılarak, özellikle STZ’nin bu ilişki üzerindeki aracılık etkisi detaylı bir şekilde incelenmiştir. Araştırma kapsamında, Doğrulayıcı Faktör Analizi (DFA) yardımıyla STZ'nin ekonomik boyut (EB), çevresel boyut (CB) ve sosyal boyut (SB) değişkenleriyle temsil edildiği ortaya konulmuştur. Analiz sonuçlarına göre, BV’nin FP üzerindeki doğrudan etkisinin sınırlı olduğu, ancak STZ’nin bu ilişki üzerinde tam aracılık etkisi gösterdiği belirlenmiştir. Bu bulgu, BV’nin FP’ye olan katkısının STZ aracılığıyla gerçekleştiğini ve böylece, STZ’nin, BV’nin FP üzerindeki etkisini güçlendiren ve yönlendiren temel bir aracı olduğunu ortaya koymuştur.

References

  • Acar, Ö. E. (2018). Sürdürülebilir tedarik zinciri uygulamaları ve dış kaynak kullanımının işletme performansına etkisi üzerine bir araştırma. [Yayınlanmamış Doktora Tezi]. Selçuk Üniversitesi.
  • Ageron, B., Gunasekaran, A., & Spalanzani, A. (2012). Sustainable supply management: An empirical study. International Journal of Production Economics, 140(1), 168-182. https://doi.org/10.1016/j.ijpe.2011.04.007
  • Ahmad, H., Hanandeh, R., Raheem, F., Alazzawi, F., Al-Daradkah, A., Eldmrat, A., Ghaith, Y., & Darawsheh, S. (2023). The effects of big data, artificial intelligence, and business intelligence on e-learning and business performance: Evidence from jordanian telecommunication firms. International Journal of Data and Network Science, 7, 35-40. https://doi.org/10.5267/j.ijdns.2022.12.009
  • Aktan, E. (2018). Büyük veri: Uygulama alanları, analitiği ve güvenlik boyutu. Bilgi Yönetim Dergisi, 1(1), 1-22. https://doi.org/10.33721/by.403010
  • Akter, S., Wamba, S., Gunasekaran, A., Dubey, R., & Childe, S. (2016). How to ımprove firm performance using big data analytics capability and business strategy alignment?. International Journal of Production Economics, 182, 113-131. https://doi.org/10.1016/j.ijpe.2016.08.018
  • Ali, A., & Ahmed, S. (2022). Big data analytics and supply chain performance: the mediating role of supply chain capabilities and innovation. Management Science Letters, 12, 307-320. https://doi.org/10.5267/j.msl.2022.4.003
  • Al-Shorman, H., Eldahamsheh, M., Attiany, M., Al-Azzam, M., & Al-Ouran, A. (2023). Potential effects of smart ınnovative solutions for supply chain performance. Uncertain Supply Chain Management, 11, 103–110. https://doi.org/10.5267/j.uscm.2022.11.005
  • Ar, İ. M. (2009). Teknoparklarda yerleşik firmalar için yeniliği etkileyen faktörlerin belirlenmesi ve yeniliğin firma performansına etkisinin incelenmesi. [Yayınlanmış Doktora Tezi]. Karadeniz Teknik Üniversitesi.
  • Baah, C., & Jin, Z. (2019). Sustainable supply chain management and organizational performance: The intermediary role of competitive advantage. Journal of Management and Sustainability, 9(1), 119-131. https://doi.org/10.5539/jms.v9n1p119
  • Bag, S., Wood, L., Xu, L., Dhamija, P., & Kayikci, Y. (2020). Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. Resources, Conservation and Recycling, 153, 104559, 1-10. https://doi.org/10.1016/j.resconrec.2019.104559
  • Bayram, N. (2004). Sosyal bilimlerde SPSS ile veri analizi. Ezgi Kitabevi.
  • Bose, R. (2006). Understanding management data systems for enterprise performance management. Industrial Management, & Data Systems, 106(1), 43–59. https://doi.org/10.1108/02635570610640988
  • Brynjolfsson, E., & McAfee, A. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-68.
  • Büyüköztürk, Ş. (2020). Sosyal bilimler için veri analizi el kitabı: İstatistik, araştırma deseni, SPSS uygulamaları ve yorum. Pegem Akademi.
  • Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Routledge.
  • Can, A. (2019). SPSS ile bilimsel araştırma sürecinde nicel veri analizi. Pegem Akademi.
  • Carter, C. D. (1997). Doing Quantative Psychological Research: From Design To Report, Psychology Press.
  • Carter, C. R., & Jennings, M. M. (2002). Logistics social responsibility: An ıntegrative framework. Journal of Business Logistics, 23(1), 145-180. https://doi.org/10.1002/j.2158-1592.2002.tb00020.x
  • Carter, C. R., & Rogers, D. (2008). A framework of sustainable supply chain management: Moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360-387. https://doi.org/10.1108/09600030810882816
  • Chae, B., Sheu, C., & Olson, D. (2014a). The ımpact of supply chain analytics on operational performance: A resource-based view. International Journal of Production Research, 52(6), 4695-4710. https://doi.org/10.1080/00207543.2013.861616
  • Chae, B., Yang, C., Olson, D., & Sheu, C. (2014b). The ımpact of advanced analytics and data accuracy on operational performance: A contingent resource based theory (RBT) Perspective. Decision Support Systems, 59, 119–126. https://doi.org/10.1016/j.dss.2013.10.012
  • Chalmeta, R., & Santos-Deleón, N. J. (2020). Sustainable supply chain in the era of Industry 4.0 and big data: a systematic analysis of literature and research. Sustainability, 12(10), 4108. https://doi.org/10.3390/su12104108
  • Chardine-Baumann, E., & Botta-Genoulaz, V. (2014). A framework for sustainable performance assessment of supply chain management practices. Computers & Industrial Engineering, 76, 138-147. https://doi.org/10.1016/j.cie.2014.07.029
  • Chen, H., Chiang, R., & Storey, V. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503
  • Chen, Daniel vd. (2015). How the use of big data analytics affects value creation in supply chain management. Journal of Management Information Systems, 32(4), 4–39. https://doi.org/10.1080/07421222.2015.1138364
  • Chien, M., & Shih, L. (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic ındustry and their relation to organizational performances. International Journal of Environmental Science and Technology, 4(3), 383-394.
  • Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the Association for Computing Machinery, 13(6), 377-387. https://dl.acm.org/doi/pdf/10.1145/362384.362685
  • Çağlayan, N. İ. (2022). Sürdürülebilir tedarik zinciri yönetiminin kurumsal itibar ve stratejik rekabete etkileri [Yayınlanmamış Yüksek Lisans Tezi]. Bahçeşehir Üniversitesi Lisansüstü Eğitim Enstitüsü.
  • Çokluk, Ö., Büyüköztürk, Ş. ve Şekercioğlu, G. (2012). Sosyal bilimler için çok değişkenli istatistik SPSS ve LİSREL uygulamaları. Pegem Akademi.
  • Daft, R. L. (1995). Organization theory and design. West Publishing Company.
  • Das D. (2018). The ımpact of sustainable supply chain management practices on firm performance: Lessons from Indian organizations. Journal of Cleaner Production, 203(1), 1-55. https://doi.org/10.1016/j.jclepro.2018.08.250
  • DeVellis, R. F. (2014). Ölçek Geliştirme Kuram ve Uygulamalar. Nobel Yayın Dağıtım.
  • Dubey, R., Gunasekaran, A., Childe, S., Papadopoulos, T., Luo, Z., Wamba, S. F., Roubaud, D. (2017). Can big data and predictive analytics ımprove social and environmental sustainability?. Technological Forecasting and Social Change, 144, 534-545. https://doi.org/10.1016/j.techfore.2017.06.020
  • Dubey, R., Jeble, S., Childe, S., Papadopoulos, T., Roubaud, D., Prakash, A. (2018). Impact of big data and predictive analytics capability on supply chain sustainability. The International Journal of Logistics Management, 29(2), 513–538. https://doi.org/10.1108/IJLM-05-2017-0134
  • Dubey, R., Gunasekaran, A., Childe, S., Papadopoulos, T., Luo, Z., Wamba, S. & Roubaud, D. (2019). Can big data and predictive analytics ımprove social and environmental sustainability?. Technological Forecasting and Social Change, 144, 534-545. https://doi.org/10.1016/j.techfore.2017.06.020
  • Dülgeroğlu, İsmail (2008). Tüketici değerlerinin pazarlamadaki yeri ve genç tüketiciler üzerine bir araştırma. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 28(2), 71-92. http://hdl.handle.net/11452/17934
  • Ektesaby, M. (2018). Determınıng the ımportance of sustaınable supply chaın management and its contribution to competitive advantage of logistic firms. [Yayınlanmamış yüksek lisans tezi]. İstanbul Teknik Üniversitesi.
  • Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: Impact on firm performance. Management Decision, 57(8), 923-1936. https://doi.org/10.1108/MD-07-2018-0825
  • Fidell, L. S, & Tabachnick, B. G. (2015). Çok değişkenli istatistiklerin kullanımı (M. Baloğlu, Çev. Ed.). Nobel Akademik Yayıncılık.
  • Field, A. (2016). Discovering statistics using IBM SPSS statistics. Sage Publications.
  • Gandomi, A., & Haider, M. (2015). Beyond the hype: big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
  • Gani, M.O., Yoshi, T., Rahman, M.S. (2022). Optimizing firm’s supply chain resilience in data-driven business environment. Journal of Global Operations and Strategic Sourcing, 16(1). https://doi.org/10.1108/JGOSS-02-2022-0013
  • Ge, X., & Jackson, J. (2014). The big data application strategy for cost reduction in automotive ındustry. Society of Automotive Engineers International Journal of Commercial Vehicles, 7(2), 588–598. https://doi.org/10.4271/2014-01-2410
  • Geissdoerfer, M., Morioka, S.N., Carvalho, M., & Evans, S. (2018). Business models and supply chains for the circular economy. Journal of Cleaner Production, 190, 712-721. https://doi.org/10.1016/j.jclepro.2018.04.159
  • George, D., & Mallery, P. (2010). SPSS for windows step by step: A simple guide and reference. Taylor & Francis.
  • Giannakis, M., & Louis, M. (2016). A multi-agent based system with big data processing for enhanced supply chain agility. Journal of Enterprise Information Management, 29(5), 706-727. https://doi.org/10.1108/JEIM-06-2015-0050
  • Giudice, M., Chierici, R., Mazzucchelli, A., & Fiano, F. (2020). Supply chain management in the era of circular economy: The moderating effect of big data. The International Journal of Logistics Management, 32(2), 337-356. https://doi.org/10.1108/IJLM-03-2020-0119
  • Gogia, S., Barnes, M., Evelson, B., Hopkins, B., Kisker, H., Yuhanna, N., Anderson, D., & Malhotra, R. (2012). The big deal about big data for customer engagement business: leaders must lead big data ınitiatives to derive value, forrester research. http://www.iab.fi/media/tutkimus-matskut/130822_forrester_the_big_deal_about_big_data.pdf
  • Golicic, S. L. and Smith, C. D. (2013). A meta-analysis of environmentally sustainable supply chain management practices and firm performance. Journal of Supply Chain Management, 49(2), 78-95. https://doi.org/10.1111/jscm.12006
  • Govindan, K., Cheng, T., Mishra, N., & Shukla, N. (2018). Big data analytics and application for logistics and supply chain management. Transportation Research Part E: Logistics and Transportation Review, 114, 343–349. https://doi.org/10.1016/j.tre.2018.03.011
  • Guide, V.D.R., & Van Wassenhove, L.N. (2009). The evolution of closed-loop supply chain research. Operations Research, 57(1), 10-18. https://doi.org/10.1287/opre.1080.0628
  • Gunasekaran, A., Tiwari, M., Dubey, R., & Wamba, S. (2016). Big data and predictive analytics applications in supply chain management. Computers & Industrial Engineering, 101, 525-527. https://doi.org/10.1016/j.cie.2016.10.020
  • Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S., Childe, S., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004
  • Gupta, M., & George, JF. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004
  • Gürbüz, S. (2021). AMOS ile yapısal eşitlik modellemesi: temel ilkeler ve uygulamalı analizler. Seçkin Yayıncılık. Hair, JF. (2010). Multivariate data analysis. Prentice Hall.
  • Hassini, E., Surti, C., & Searcy, C. (2012). A literature review and a case study of sustainable supply chains with a focus on metrics. International Journal of Production Economics, 140(1), 69-82. https://doi.org/10.1016/j.ijpe.2012.01.042
  • Hu, L., & Basiglio, A. (2023). A multiple-case study on the adoption of customer relationship management and big data analytics in the automotive ındustry. The Total Quality Management Journal, 36(9), 1-21. https://doi.org/10.1108/TQM-05-2023-0137
  • Huang, C. K., Wang, T., & Huang, TY. (2020). Initial evidence on the ımpact of big data ımplementation on firm performance. Information Systems Frontiers, 22, 475-487. https://doi.org/10.1007/s10796-018-9872-5
  • Jabbour, CJC., Fiorini, P., Ndubisi, N., Queiroz, M., & Piato, E. (2020). Digitally-enabled sustainable supply chains in the 21st century: a review and a research agenda. Science of The Total Environment, 725, 138177, 1-14. https://doi.org/10.1016/j.scitotenv.2020.138177
  • Jiang, X., Yang, Y., & Luo, J. (2019). Big data applications in Chinese white spirits sustainable supply chain management, proceedings of the twelfth ınternational conference on management science and engineering management. Lecture Notes on Multidisciplinary Industrial Engineering, 1515-1527. https://doi.org/10.1007/978-3-319-93351-1_119
  • Karaboğa, T. ve Zehir, C. (2020). Büyük verinin etkin yönetiminde stratejik uyum ve veri odaklı kültür. IBAD Sosyal Bilimler Dergisi, 8, 63-76. https://doi.org/10.21733/ibad.717117
  • Karaboğa, T., Zehir, C., Tatoglu, E., Karaboğa, A, & Bouguerra, A. (2023). Big data analytics management capability and firm performance: the mediating role of data-driven culture. Review of Managerial Science, 17, 2655-2684. https://doi.org/10.1007/s11846-022-00596-8
  • Karagöz, Y. (2017). SPSS AMOS uygulamalı nitel-nicel-karma bilimsel araştırma yöntemleri ve yayın etiği, Nobel Akademik Yayıncılık.
  • Karahan, K. S. (2023). Rekabet stratejilerinin firma performansına etkisinde liderliğin aracılık rolü. [Yayınlanmamaış doktora tezi]. Van Yüzüncü Yıl Üniversitesi.
  • Karakaş, B. ve Ak R. (2003). Kamu yönetiminde performans yönetimi önemli midir?. Kamu yönetiminde kalite 3. ulusal kongresi bildirileri, Ankara: TODAİE Yayınları, No:319, 337-351.
  • Karaman, H., Atar, B. ve Aktan, D. (2017). Açımlayıcı faktör analizinde kullanılan faktör çıkartma yöntemlerinin karşılaştırılması. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 37(3), 1173-1193. https://doi.org/10.17152/gefad.309356
  • Khine, P. P., & ve Shun, WZ. (2017). Big data for organizations: A review. Journal of Computer and Communications, 5, 40-48. https://doi.org/10.4236/jcc.2017.53005
  • Koplin, J., suering, S., & Mesterharm, M. (2007). Incorporating sustainability into supply management in the automotive ındustry–the case of the Volkswagen AG. Journal of Cleaner Production, 15(11-12), 1053-1062. https://doi.org/10.1016/j.jclepro.2006.05.024
  • Lambert, DM., & Cooper, MC. (2000). Issues in supply chain management. Industrial Marketing Management, 29(1), 65-83. https://doi.org/10.1016/S0019-8501(99)00113-3
  • Lii, P., & Kuo, F. (2016). Innovation-oriented supply chain integration for combined competitiveness and firm performance. International Journal of Production Economics, 174, 142–155. https://doi.org/10.1016/j.ijpe.2016.01.018
  • Liu, X., Yang, J., Qu, S., Wang, L., Shishime, T., & Bao, C. (2012). Sustainable production: Practices and determinant factors of green supply chain management of Chinese companies. Business Strategy and the Environment, 21(1), 1–16. https://doi.org/10.1002/bse.705
  • Mani, V., Delgado, C., Hazen, B., & Patel, P. (2017). Mitigating supply chain risk via sustainability using big data analytics: evidence from the manufacturing supply chain. Sustainability, 9(4), 608. https://doi.org/10.3390/su9040608
  • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburg, C., & Byers, A.H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
  • Moeuf, A., Pellerin, R., Lamouri, S., Giraldo, ST., & Barbaray, R. (2018). The industrial management of SMEs in the era of Industry 4.0. International Journal of Production Researh, 56(3), 1118–1136. https://doi.org/10.1080/00207543.2017.1372647
  • Monye, SI., Afolalu, A. S., Lawal, L. S., Oluwatoyin, O. A., Adeyemi, A. G., Ughapu, EI., & Adegbenjo, A. (2023). Impact of Industry (4.0) in Automobile Industry. Environment, Energy and Earth Sciences Web of Conferences, 1-21. https://doi.org/10.1051/e3sconf/202343001222
  • Neaga, I., Liu, S., Xu, L., Chen, H., Hao, Y. (2015). Cloud enabled big data business platform for logistics services: a research and development agenda. Lecture Notes in Business Information Processing, 22–33. https://doi.org/10.1007/978-3-319-18533-0_3
  • Neely, A., Gregory, M., & Platts, K. (2005). Performance measurement system design: a literature review and research agenda. International Journal of Operations & Production Management, 25(12), 1228-1263. https://doi.org/10.1108/01443570510633639
  • Nikishina, L. B. (2023). Industry 4.0: History of emergence, development, prospects of transformation into Industry 5.0. International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies, 458, 1-8. https://doi.org/10.1051/e3sconf/202345806023
  • Nisar, Q. A., Haider, S., Ameer, I., Hussain, M. S., Gill, S. S., & Usama, A. (2022) Sustainable supply chain management performance in post COVID-19 era in an emerging economy: A big data perspective. International Journal of Emerging Markets, 18(12), 5900-5920. https://doi.org/10.1108/IJOEM-12-2021-1807
  • Novitasari, M., & Agustia, D. (2021). Green supply chain management and firm performance: The mediating effect of green ınnovation. Journal of Industrial Engineering and Management, 14(2), 391-403. https://doi.org/10.3926/jiem.3384
  • Oğuz, A. (2022). Tedarik zinciri entegrasyonu ve dijitalleşmenin performansa etkisinde alıcı-tedarikçi risk yönetiminin aracı rolü. [Yayınlanmış doktora tezi]. Karadeniz Teknik Üniversitesi.
  • Olsen, T. L., & Tomlin, B. (2019). Industry 4.0: Opportunities and challenges for operations management. Manufacturing & Service Operations Management, 22(1), 113-122. https://doi.org/10.1287/msom.2019.0796
  • Oncioiu, H. I., Bunget, O., Türkeş, M. C., Capuşneanu, S., Topor, S. I., Tamaş, A. S., Rakoş, I. S. & Hint, S. (2019). The ımpact of big data analytics on company performance in supply chain management. Sustainability, 11(18), 4864. https://doi.org/10.3390/su11184864
  • Oracle, (2012). Big data for the enterprise, redwood shores, ca: Oracle. 19.12.2020 tarihinde https://www.oracle.com/technetwork/database/bi-datawarehousing/wp-big-data-with-oracle-521209.pdf adresinden alınmıştır.
  • Ortas, E., Moneva, J. M., & Etxeberria, IA. (2014). Sustainable supply chain and company performance. Supply Chain Management: An International Journal, 19(3), 332–350. https://doi.org/10.1108/SCM-12-2013-0444
  • Özkan, OS. ve Omay, T. (2019). Psikolojik sermayenin bireysel performans üzerindeki etkisinde birey-örgüt uyumunun aracılık rolü: Vakıf üniversitelerindeki öğretim üyelerine yönelik bir araştırma. İşletme Araştırmaları Dergisi, 11(2), 743-757. https://doi.org/10.20491/isarder.2019.633
  • Pancaroğlu, S. (2023). Çevik üretimin sürdürülebilirlik performansına etkisinde ürün ve süreç inovasyonunun aracılık rolü: Türkiye hazır giyim sektörü üzerine bir araştırma. [Yayınlanmış doktora tezi]. Karadeniz Teknik Üniversitesi.
  • Parast, M. M. (2020).The impact of R&D investment on mitigating supply chain distruptions: Empirical evidence from U.S. firms. International Journal of Production Economics, 227, 1-15. https://doi.org/10.1016/j.ijpe.2020.107671
  • Sanders, N. R. (2016). How to use big data to drive your supply chain. California Management Review, 58(3), 26-48. https://doi.org/10.1525/cmr.2016.58.3.26
  • Schoenherr, T., & Speier-Pero, C. (2015). Data science, predictive analytics, and big data in supply chain management: current state and future potential. Journal of Business Logistics, 36(1), 120–132. https://doi.org/10.1111/jbl.12082
  • Seddon, J. J, & Currie, W. L. (2017). A model for unpacking big data analytics in high-frequency trading. Journal of Business Research, 70, 300-307. https://doi.org/10.1016/j.jbusres.2016.08.003
  • Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710. https://doi.org/10.1016/j.jclepro.2008.04.020
  • Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management. Decision Support Systems, 54, 1513-1520. https://doi.org/10.1016/j.dss.2012.05.053
  • Silva, G. M., Gomes, P. J., & Sarkis, J. (2019). The role of innovation in the implementation of green supply chain management practices. Business Strategy and the Environment, 28(5), 819-832. https://doi.org/10.1002/bse.2283
  • Sohn, S. Y., Joo, Y. G., & Han, H. (2007). Structural equation model for the evaluation of national funding on R&D project of SMEs in consideration with MBNQA criteria. Evaluation and Program Planning, 30, 10-20. https://doi.org/10.1016/j.evalprogplan.2006.10.002
  • Stevens, G. (1989). Integrating the supply chain. International Journal of Physical Distribution & Materials Management, 19(8), 3–8. https://doi.org/10.1108/EUM0000000000329
  • Syed, M. W., Li, J. Z., Junaid, M., Ye, X., Ziaullah, M. (2019). An empirical examination of sustainable supply chain risk and ıntegration practices: a performance-based evidence from Pakistan. Sustainability, 11(9), 1-21. https://doi.org/10.3390/su11195334
  • Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. International Journal of Logistics Research and Applications, 9(1), 33-45. https://doi.org/10.1080/13675560500405584
  • Thanabalan, P. Vafaei-Zadeh, A. Hanifah, & Ramayah T. (2024). Big data analytics adoption in manufacturing companies: the contingent role of data-driven culture. Information systems Frontiers. https://doi.org/10.1007/s10796-024-10491-0
  • Uladi, A. İ. ve Arı, ES. (2023). Büyük veri, büyük veri analizi ve uygulama alanları. Yönetim Bilişim Sistemleri Dergisi, 9(1), 1-14.
  • Vachon, S., & Klassen, R. D. (2008). Environmental management and manufacturing performance: The role of collaboration in the supply chain. International Journal of Production Economics, 111(2), 299-315. https://doi.org/10.1016/j.ijpe.2006.11.030
  • Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big ımpact: findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031
  • Wamba, S. F., Gunasekaran, A., Akter, S., Ren, SJ., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: effects of dynamic capabilities. Journal of Business Research, 70, 356-365. https://doi.org/10.1016/j.jbusres.2016.08.009
  • Wang, G., Gunasekaran, A., Ngai, EWT., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: certain ınvestigations for research and applications. International Journal of Production Economics, 176, 98-110. https://doi.org/10.1016/j.ijpe.2016.03.014
  • White, M. (2012). Digital workplaces: vision and reality. Business Information Review, 29(4), 205-214. https://doi.org/10.1177/0266382112470412
  • Wolff, J. A., & Pett, TL. (2006). Small-firm performance: Modeling the role of product and process ımprovements. Journal of Small Business Management, 44(2), 268-284. https://doi.org/10.1111/j.1540-627X.2006.00167.x
  • Yadegaridehkordi, E., Nilashi, M., Shuib, L., Nasir, M., Asadi, S., Samad, S., Awang, N. (2019). The impact of big data on firm performance in hotel industry. Electronic Commerce Research and Applications, 40, 100921, 1-33. https://doi.org/10.1016/j.elerap.2019.100921
  • Yalabık, B., & Fairchild, R. J. (2011). Customer, regulatory, and competitive pressure as drivers of environmental innovation. International Journal of Production Economics, 131(2), 288-296. https://doi.org/10.1016/j.ijpe.2011.01.020
  • Yamin, M. A. (2021). Investigating the drivers of supply chain resilience in the wake of the COVID-19 pandemic: Empirical evidence from an emerging economy. Sustainability, 13, 1-16. https://doi.org/10.3390/su132111939
  • Yıldız, B., & Çetindaş, A. (2019). The mediating role of supply chain agility in the effect of strategic resource usage on the company performance. Business & Management Studies: An International Journal, 6(4), 878-897. https://doi.org/10.15295/bmij.v6i4.379
  • Yımam, O. M. (2024). Evaluatıng the relatıonshıp among marketıng agılıty, entrepreneurıal marketing, and fırm performance ın the dıgıtal era. Doktora Tezi, Ondokuz Mayıs Unıversıty Instıtute Of Graduate Studıes Department Of Busıness Admınıstratıon.
  • Zhou, M., Qiao, Y., Liu, B., Vogel-Heuser, B., & Kim, H. (2023). Machine learning for ındustry 4.0. IEEE Robotics & Automation Magazine, 30(2), 8-9. https://doi.org/10.1109/MRA.2023.3266618
  • Zehir, C., & Bilgetürk, M. (2022). Büyük veri analitiği yeteneği ve firma performansı ilişkisi: Firma büyüklüğünün düzenleyici rolü. Yıldız Sosyal Bilimler Enstitüsü Dergisi, 6(2), 62-73. https://doi.org/10.14744/ysbed.2022.00019
  • Zhu, Q., & Sarkis, J. (2004). Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. Journal of Operations Management, 22(3), 265-289. https://doi.org/10.1016/j.jom.2004.01.005
  • Zink, K., Steimle, U., & Fischer, K. (2008). Human factors, business excellence and corporate sustainability: Differing perspectives, joint objectives. Corporate Sustainability as a Challenge for Comprehensive Management, 3-18. https://doi.org/10.1007/978-3-7908-2046-1_1
There are 115 citations in total.

Details

Primary Language Turkish
Subjects Production and Operations Management, Sustainable Development
Journal Section Articles
Authors

Özlem Hacıfettahoğlu 0000-0001-7476-7173

Selçuk Perçin 0000-0002-5840-7204

Publication Date September 26, 2025
Submission Date October 10, 2024
Acceptance Date February 4, 2025
Published in Issue Year 2025 Volume: 43 Issue: 3

Cite

APA Hacıfettahoğlu, Ö., & Perçin, S. (2025). Büyük Veri, Sürdürülebilir Tedarik Zinciri ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma. Hacettepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 43(3), 509-538. https://doi.org/10.17065/huniibf.1564122
AMA Hacıfettahoğlu Ö, Perçin S. Büyük Veri, Sürdürülebilir Tedarik Zinciri ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. September 2025;43(3):509-538. doi:10.17065/huniibf.1564122
Chicago Hacıfettahoğlu, Özlem, and Selçuk Perçin. “Büyük Veri, Sürdürülebilir Tedarik Zinciri Ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma”. Hacettepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi 43, no. 3 (September 2025): 509-38. https://doi.org/10.17065/huniibf.1564122.
EndNote Hacıfettahoğlu Ö, Perçin S (September 1, 2025) Büyük Veri, Sürdürülebilir Tedarik Zinciri ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 43 3 509–538.
IEEE Ö. Hacıfettahoğlu and S. Perçin, “Büyük Veri, Sürdürülebilir Tedarik Zinciri ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma”, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 43, no. 3, pp. 509–538, 2025, doi: 10.17065/huniibf.1564122.
ISNAD Hacıfettahoğlu, Özlem - Perçin, Selçuk. “Büyük Veri, Sürdürülebilir Tedarik Zinciri Ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma”. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 43/3 (September2025), 509-538. https://doi.org/10.17065/huniibf.1564122.
JAMA Hacıfettahoğlu Ö, Perçin S. Büyük Veri, Sürdürülebilir Tedarik Zinciri ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2025;43:509–538.
MLA Hacıfettahoğlu, Özlem and Selçuk Perçin. “Büyük Veri, Sürdürülebilir Tedarik Zinciri Ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma”. Hacettepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, vol. 43, no. 3, 2025, pp. 509-38, doi:10.17065/huniibf.1564122.
Vancouver Hacıfettahoğlu Ö, Perçin S. Büyük Veri, Sürdürülebilir Tedarik Zinciri ve Firma Performansı Arasındaki İlişkinin İncelenmesine Yönelik Araştırma. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2025;43(3):509-38.

Manuscripts must conform to the requirements indicated on the last page of the Journal - Guide for Authors- and in the web page.


Privacy Statement

Names and e-mail addresses in this Journal Web page will only be used for the specified purposes of the Journal; they will not be opened for any other purpose or use by any other person.