Research Article
BibTex RIS Cite

Yulafın (Avena sativa L.) Verim ve Kalitesine Çinko Uygulaması ve Ekim Zamanının Etkileri

Year 2021, Volume: 7 Issue: 1, 137 - 145, 16.04.2021
https://doi.org/10.24180/ijaws.822602

Abstract

Bu çalışmada, çinko (Zn) uygulamalarının kışlık ve yazlık ekim zamanlarında ekilen yerel yulaf genotiplerinin verim performansı, tane kalite özellikleri (protein, β-glukan, ADF ve NDF) ve mikro element (Zn, Fe, Cu ve Mn) konsantrasyonu üzerine etkilerini belirlemek amaçlanmıştır. Deneme üç tekerrürlü olarak bölünmüş parseller deneme deseninde arazi koşullarında oluşturulmuştur. Ekim zamanı ana parsellere, Zn uygulamaları (0, 5 ve 10 kg ha-1) alt parsellere ve genotipler alt alt parsellere yerleştirilmiştir. Çinko uygulamaları, hem kışlık hem de yazlık ekimlerde, genotiplerin tane verimini, β-glukan, ADF, NDF ve mikroelement konsantrasyonlarını artırmıştır. Tane protein içeriği Zn uygulamaları ile azalış göstermiştir. Yulaf tanelerinin Zn konsantrasyonu, β-glukan, Cu ve Mn ile pozitif; protein, Fe ve Cu ile negatif bir korelasyon göstermiştir. Elde edilen verilere göre yulaf bitkilerine Zn uygulanmasıyla, kışlık ve yazlık ekimde verim performansının artırılabileceğini ve kalitesinin iyileştirilebileceği görülmüştür. Kışlık ekimde yulafın incelenen tane kalitesi özellikleri ve mikroelement konsantrasyonları yazlık ekimden daha yüksek olarak belirlenmiştir. Bu nedenle, ülkemizde yazlık olarak yetiştirilen yulaf bitkilerinin, kışı çok sert geçmeyen iklim koşullarına sahip bölgelerde, kışlık olarak da yetiştirilebilmesinin tane kalitesini olumlu etkileyeceği sonucuna varılmıştır. Aynı zamanda yulaf bitkisinin tane Zn içeriğinin artırılması ile insan ve hayvan beslenmesindeki etkinliği de artmış olacaktır.

References

  • AACCI. (2010). AACC Approved Methods (11 th ed.). American Association of Cereal Chemists International (AACC), St. Paul, MN.
  • Adiloglu, S. (2006). The effect of increasing nitrogen and zinc doses on the iron, copper and the manganese contents of maize plant in calcareous and zinc deficient soils. Asian Journal of Plant Sciences, 5, 504–507.
  • Akgün, I., Karaman, R., Eraslan, F., & Kaya, M. (2016). Effect of Zinc on Some Grain Quality Parameters in Bread and Durum Wheat Cultivars. Universal Journal of Agricultural Research, 4(6), 260-265.
  • Ames, N., Storsley, J., & Thandapilly, S. J. (2018). Functionality of beta-glucan from oat and barley and its relation with human health. In: T. Beta & M. E. Camire (Eds.), Cereal grain‐based functional foods (pp. 141– 166). Cambridge, UK: Royal Society of Chemistry.
  • Anonim. (2020). World Agricultural Production USDA FAS- Circular Series WAP 6-19 June 2019. https://apps.fas. usda.gov/psdonline/app/index.html#/app/downloads.
  • Bagci, A., Erdal, I., Gultekin, I., Yilmaz, A., Ekiz, H., Sade, B., Torun, M. B., & Cakmak, I. (2007). Effect of zinc fertilization and irrigation on grain yield, zinc concentration and quality of cereal species. Zınc Crops, Improving Crop Production and Human Health, Istanbul, Turkey.
  • Barut, H., Şimşek, T., & Aykanat, S. (2017). Çinko uygulamasının makarnalık buğday çeşitlerinde verim ve bazı tarımsal özellikler üzerine etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 4(1), 10-23.
  • Biel, W., Kazimierska, K., & Bashutska, U. (2020). Nutritional value of wheat, triticale, barley and oat grains. Acta Scientiarum Polonorum Zootechnica, 19(2), 19-28.
  • Bozbulut, R., & Sanlier N. (2019). Promising effects of β-glucans on glyceamic control in diabetes. Trends in Food Science & Technology, 83, 159-166.
  • Brand, T. S., Cruywagen, C. W., Brandt, D. A., Viljoen, M., & Burger, W. W. (2003). Variation in the chemical composition, physical characteristics and energy values of cereal grains produced in the Western Cape area of South Africa. South African Journal of Animal Science, 33, 117-126.
  • Cakmak, I., Torun, B., Erenoğlu, B., Öztürk, L., Marschner, H., Kalayci, M., Ekiz, H., & Yilmaz, A. (1998). Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica, 100(1-3), 349-357.
  • Daryanto, S., Wang, L., & Jacinthe, P. A. (2016). Global Synthesis of Drought Effects on Maize and Wheat Production. PLOS ONE, 11(5), 1-15.
  • De Oliveira Maximino, J. V., Barros, L. M., Pereira, R. M., de Santi, I. I., Aranha, B. C., Busanello, C., Viena, V. E., Fretiag, R. A., Batista, B. L., de Oliveira, A. C., & Pegoraro, C. (2020). Mineral and Fatty Acid Content Variation in White Oat Genotypes Grown in Brazil. Biological Trace Element Research, 1-13.
  • Eyüpoğlu, F., Kurucu, N., Talaz, S., & Canisağ, U. (1994). Türkiye topraklarının bitkiye yarayışlı mikro element durumu. Toprak ve Gübre Araştırma Enstitüsü Yıllık Raporu.
  • Ghasal, P. C., Shivay, Y. S., Pooniya, V., Choudhary, M., & Verma, R. K. (2017). Response of wheat genotypes to zinc fertilization for improving productivity and quality. Archives of Agronomy and Soil Science, 63(11), 1597-1612.
  • Givens, D. I., Davies, T. W., & Laverick, R. M. (2004). Effect of variety, nitrogen fertiliser and various agronomic factors on the nutritive value of husked and naked oats grain. Animal Feed Science and Technology, 113(1-4), 169-181.
  • Hackmann, T. J., Sampson, J. D., & Spain, J. N. (2008). Comparing relative feed value with degradation parameters of grass and legume forages. Journal of Animal Science, 86(9), 2344-2356.
  • Kahraman, T., Subaşı, A. S., Yıldız, Ö., Büyükkileci, C. & Sanal, T. (2019). Evaluation of oat (Avena sativa L.) Genotypes for yield and some quality parameters in Trakya-Marmara Region. Turkish Journal of Agriculture - Food Science and Technology, 7, 145-151.
  • Kaur, S., Bhardwaj, R. D., Kapoor, R., & Grew, S. K. (2019). Biochemical characterization of oat (Avena sativa L.) genotypes with high nutritional potential. LWT - Food Science and Technology, 110, 32–39.
  • Kutlu, I., & Gulmezoglu, N. (2020). Morpho-agronomic characters of oat growing with humic acid and zinc application in different sowing times. Plant Science Today, 7(4), 594-600.
  • Li, Q., Chen, H. H., Qi, Y. P., Ye, X., Yang, L. T., Huang, Z. R., & Chen, L. S. (2019). Excess copper effects on growth, uptake of water and nutrients, carbohydrates, and PSII photochemistry revealed by OJIP transients in Citrus seedlings. Environmental Science and Pollution Research, 26(29), 30188-30205.
  • Liu, D. Y., Zhang, W., Pang, L. L., Zhang, Y. Q., Wang, X. Z., Liu, Y. M., & Zou, C. Q. (2017). Effects of zinc application rate and zinc distribution relative to root distribution on grain yield and grain Zn concentration in wheat. Plant and Soil, 411(1-2), 167-178.
  • Mishra, L. K. (2012). Effect of phosphorus and zinc fertilization on biochemical composition of wheat. The Bioscan, 7(3), 445-449.
  • Morgounov, A., Gómez-Becerra, H. F., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., ... & Cakmak, I. (2007). Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155(1), 193-203.
  • Mut, Z., Akay, H., & Erbaş Köse, Ö. D. (2018). Grain yield, quality traits and grain yield stability of local oat cultivars. Journal of Soil Science and Plant Nutrition, 18(1), 269-281.
  • Narwal, R. P., & Malik, R. S. (2011). Interaction of zinc with other nutrients. Indian Journal of Fertilisers, 7(10), 140-150.
  • NFTA, National forage testing association. (2004). http://www.foragetesting.org/. Erişim tarihi: 06.04.2021.
  • iyigaba, E., Twizerimana, A., Mugenzi, I., Ngnadong, W. A., Ye, Y. P., Wu, B. M., & Hai, J. B. (2019). Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy, 9(5), 250.
  • Peterson, D. M., Wesenberg, D. M., Burrup, D. E. & Erickson, C. A. (2005). Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Science, 45(4), 1249-1255.
  • Reichman, S. M. (2002). The response of plants to metal toxicity: a review focusing on copper, manganese and zinc. Occasional Paper No.14. Melbourne: Australian Minerals and Energy Environment Foundation.
  • Rodehutscord, M., Rückert, C., Maurer, H. P., Schenkel, H., Schipprack, W. & Knudsen, K. E. B. (2016). Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Journal Archives of Animal Nutrition, 70(2), 87–107.
  • Shivay, Y. S., Prasad, R., & Pal, M. (2013). Zinc fortification of oat grains through zinc fertilisation. Agricultural Research, 2(4), 375-381.
  • Soil Survey Laboratory Methods Manuel (2004). Soil Survey Investigation Report United States Department of Agriculture Natural Resources Conservation Service No:42, Version 4.0 November
  • Stevens, E. J., Armstrong, K. W., Bezar, H. J., Griffin, W. B., & Hampton, J. G. (2004). Fodder oats, an overview. In Fodder Oats, a World Overview (eds J.M. Suttie & S.G. Reynolds), pp. 1-9. Food and Agriculture Organization of the United Nations, Rome, Italy.
  • Şahin, M., Akçacık, A. G., Aydoğan, S., Hamzaoğlu, S., & Demir, B. (2017). Yulaf (Avena sativa spp.) tanesinde bazı fiziksel özellikler ve besin bileşenlerinin tespiti. Bahri Dağdaş Hayvancılık Araştırma Dergisi, 6(1), 23-28.
  • Tekce, E., & Gül, M. (2014). Ruminant beslemede NDF ve ADF’nin önemi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 9(1), 63-73.
  • Torun, M. B. (1997). Değişik tahıl türlerinin ve buğday çeşitlerinin çinko eksikliğine karşı duyarlılığının araştırılması. Doktora Tezi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.
  • Yılmaz, N., & Sonkaya, M. (2020). Yulafta (Avena sativa L.) çinkolu gübrelemenin verim ve verim ögeleri üzerine etkisi. Akademik Ziraat Dergisi, 9(1), 111-118.

The Effects of Zinc Application and Planting Time on Yield and Quality of Oats (Avena sativa L.)

Year 2021, Volume: 7 Issue: 1, 137 - 145, 16.04.2021
https://doi.org/10.24180/ijaws.822602

Abstract

The aim of the study is to determine the effects of zinc (Zn) applications on yield performance, grain quality characteristics (protein, B-glucan, ADF, NDF) and micro element (Zn, Fe, Cu, Mn) concentration of local oat genotypes planted in winter and spring sowing. The experiment was created in three replications in a split plot pattern under field conditions. Sowing time was placed in main plots, Zn application rates (0, 5 and 10 kg ha-1) in sub plots and genotypes in sub-sub plots. Zinc applications increased in grain yield, β-glucan, ADF, NDF and micro element concentration of genotypes at winter and spring sowing. On the other hand, grain protein content decreased with Zn applications. The Zn concentration of the oat grains showed a positive correlation with B-glucan, Cu and Mn, and a negative correlation with protein, Fe and Cu. The results showed that by applying Zn to oat plants, the yield performance and quality can be improved in winter and spring planting. The overall performance of winter cultivation was determined to be higher than spring cultivation. Therefore, it was concluded that growing oat plants, which are typically grown in the spring in our country, under zones which not too harsh winter conditions, can positively affect the grain quality. In addition, by increasing the grain Zn content of the oat plant, its effectiveness in human and animal nutrition will be increased.

References

  • AACCI. (2010). AACC Approved Methods (11 th ed.). American Association of Cereal Chemists International (AACC), St. Paul, MN.
  • Adiloglu, S. (2006). The effect of increasing nitrogen and zinc doses on the iron, copper and the manganese contents of maize plant in calcareous and zinc deficient soils. Asian Journal of Plant Sciences, 5, 504–507.
  • Akgün, I., Karaman, R., Eraslan, F., & Kaya, M. (2016). Effect of Zinc on Some Grain Quality Parameters in Bread and Durum Wheat Cultivars. Universal Journal of Agricultural Research, 4(6), 260-265.
  • Ames, N., Storsley, J., & Thandapilly, S. J. (2018). Functionality of beta-glucan from oat and barley and its relation with human health. In: T. Beta & M. E. Camire (Eds.), Cereal grain‐based functional foods (pp. 141– 166). Cambridge, UK: Royal Society of Chemistry.
  • Anonim. (2020). World Agricultural Production USDA FAS- Circular Series WAP 6-19 June 2019. https://apps.fas. usda.gov/psdonline/app/index.html#/app/downloads.
  • Bagci, A., Erdal, I., Gultekin, I., Yilmaz, A., Ekiz, H., Sade, B., Torun, M. B., & Cakmak, I. (2007). Effect of zinc fertilization and irrigation on grain yield, zinc concentration and quality of cereal species. Zınc Crops, Improving Crop Production and Human Health, Istanbul, Turkey.
  • Barut, H., Şimşek, T., & Aykanat, S. (2017). Çinko uygulamasının makarnalık buğday çeşitlerinde verim ve bazı tarımsal özellikler üzerine etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 4(1), 10-23.
  • Biel, W., Kazimierska, K., & Bashutska, U. (2020). Nutritional value of wheat, triticale, barley and oat grains. Acta Scientiarum Polonorum Zootechnica, 19(2), 19-28.
  • Bozbulut, R., & Sanlier N. (2019). Promising effects of β-glucans on glyceamic control in diabetes. Trends in Food Science & Technology, 83, 159-166.
  • Brand, T. S., Cruywagen, C. W., Brandt, D. A., Viljoen, M., & Burger, W. W. (2003). Variation in the chemical composition, physical characteristics and energy values of cereal grains produced in the Western Cape area of South Africa. South African Journal of Animal Science, 33, 117-126.
  • Cakmak, I., Torun, B., Erenoğlu, B., Öztürk, L., Marschner, H., Kalayci, M., Ekiz, H., & Yilmaz, A. (1998). Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica, 100(1-3), 349-357.
  • Daryanto, S., Wang, L., & Jacinthe, P. A. (2016). Global Synthesis of Drought Effects on Maize and Wheat Production. PLOS ONE, 11(5), 1-15.
  • De Oliveira Maximino, J. V., Barros, L. M., Pereira, R. M., de Santi, I. I., Aranha, B. C., Busanello, C., Viena, V. E., Fretiag, R. A., Batista, B. L., de Oliveira, A. C., & Pegoraro, C. (2020). Mineral and Fatty Acid Content Variation in White Oat Genotypes Grown in Brazil. Biological Trace Element Research, 1-13.
  • Eyüpoğlu, F., Kurucu, N., Talaz, S., & Canisağ, U. (1994). Türkiye topraklarının bitkiye yarayışlı mikro element durumu. Toprak ve Gübre Araştırma Enstitüsü Yıllık Raporu.
  • Ghasal, P. C., Shivay, Y. S., Pooniya, V., Choudhary, M., & Verma, R. K. (2017). Response of wheat genotypes to zinc fertilization for improving productivity and quality. Archives of Agronomy and Soil Science, 63(11), 1597-1612.
  • Givens, D. I., Davies, T. W., & Laverick, R. M. (2004). Effect of variety, nitrogen fertiliser and various agronomic factors on the nutritive value of husked and naked oats grain. Animal Feed Science and Technology, 113(1-4), 169-181.
  • Hackmann, T. J., Sampson, J. D., & Spain, J. N. (2008). Comparing relative feed value with degradation parameters of grass and legume forages. Journal of Animal Science, 86(9), 2344-2356.
  • Kahraman, T., Subaşı, A. S., Yıldız, Ö., Büyükkileci, C. & Sanal, T. (2019). Evaluation of oat (Avena sativa L.) Genotypes for yield and some quality parameters in Trakya-Marmara Region. Turkish Journal of Agriculture - Food Science and Technology, 7, 145-151.
  • Kaur, S., Bhardwaj, R. D., Kapoor, R., & Grew, S. K. (2019). Biochemical characterization of oat (Avena sativa L.) genotypes with high nutritional potential. LWT - Food Science and Technology, 110, 32–39.
  • Kutlu, I., & Gulmezoglu, N. (2020). Morpho-agronomic characters of oat growing with humic acid and zinc application in different sowing times. Plant Science Today, 7(4), 594-600.
  • Li, Q., Chen, H. H., Qi, Y. P., Ye, X., Yang, L. T., Huang, Z. R., & Chen, L. S. (2019). Excess copper effects on growth, uptake of water and nutrients, carbohydrates, and PSII photochemistry revealed by OJIP transients in Citrus seedlings. Environmental Science and Pollution Research, 26(29), 30188-30205.
  • Liu, D. Y., Zhang, W., Pang, L. L., Zhang, Y. Q., Wang, X. Z., Liu, Y. M., & Zou, C. Q. (2017). Effects of zinc application rate and zinc distribution relative to root distribution on grain yield and grain Zn concentration in wheat. Plant and Soil, 411(1-2), 167-178.
  • Mishra, L. K. (2012). Effect of phosphorus and zinc fertilization on biochemical composition of wheat. The Bioscan, 7(3), 445-449.
  • Morgounov, A., Gómez-Becerra, H. F., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., ... & Cakmak, I. (2007). Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155(1), 193-203.
  • Mut, Z., Akay, H., & Erbaş Köse, Ö. D. (2018). Grain yield, quality traits and grain yield stability of local oat cultivars. Journal of Soil Science and Plant Nutrition, 18(1), 269-281.
  • Narwal, R. P., & Malik, R. S. (2011). Interaction of zinc with other nutrients. Indian Journal of Fertilisers, 7(10), 140-150.
  • NFTA, National forage testing association. (2004). http://www.foragetesting.org/. Erişim tarihi: 06.04.2021.
  • iyigaba, E., Twizerimana, A., Mugenzi, I., Ngnadong, W. A., Ye, Y. P., Wu, B. M., & Hai, J. B. (2019). Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy, 9(5), 250.
  • Peterson, D. M., Wesenberg, D. M., Burrup, D. E. & Erickson, C. A. (2005). Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Science, 45(4), 1249-1255.
  • Reichman, S. M. (2002). The response of plants to metal toxicity: a review focusing on copper, manganese and zinc. Occasional Paper No.14. Melbourne: Australian Minerals and Energy Environment Foundation.
  • Rodehutscord, M., Rückert, C., Maurer, H. P., Schenkel, H., Schipprack, W. & Knudsen, K. E. B. (2016). Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Journal Archives of Animal Nutrition, 70(2), 87–107.
  • Shivay, Y. S., Prasad, R., & Pal, M. (2013). Zinc fortification of oat grains through zinc fertilisation. Agricultural Research, 2(4), 375-381.
  • Soil Survey Laboratory Methods Manuel (2004). Soil Survey Investigation Report United States Department of Agriculture Natural Resources Conservation Service No:42, Version 4.0 November
  • Stevens, E. J., Armstrong, K. W., Bezar, H. J., Griffin, W. B., & Hampton, J. G. (2004). Fodder oats, an overview. In Fodder Oats, a World Overview (eds J.M. Suttie & S.G. Reynolds), pp. 1-9. Food and Agriculture Organization of the United Nations, Rome, Italy.
  • Şahin, M., Akçacık, A. G., Aydoğan, S., Hamzaoğlu, S., & Demir, B. (2017). Yulaf (Avena sativa spp.) tanesinde bazı fiziksel özellikler ve besin bileşenlerinin tespiti. Bahri Dağdaş Hayvancılık Araştırma Dergisi, 6(1), 23-28.
  • Tekce, E., & Gül, M. (2014). Ruminant beslemede NDF ve ADF’nin önemi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 9(1), 63-73.
  • Torun, M. B. (1997). Değişik tahıl türlerinin ve buğday çeşitlerinin çinko eksikliğine karşı duyarlılığının araştırılması. Doktora Tezi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.
  • Yılmaz, N., & Sonkaya, M. (2020). Yulafta (Avena sativa L.) çinkolu gübrelemenin verim ve verim ögeleri üzerine etkisi. Akademik Ziraat Dergisi, 9(1), 111-118.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Botany
Journal Section Soil Science and Plant Nutrition
Authors

İmren Kutlu 0000-0002-3505-1479

Yaşar Karaduman 0000-0003-1306-3572

Nurdilek Gülmezoğlu

Publication Date April 16, 2021
Submission Date November 6, 2020
Acceptance Date February 8, 2021
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Kutlu, İ., Karaduman, Y., & Gülmezoğlu, N. (2021). Yulafın (Avena sativa L.) Verim ve Kalitesine Çinko Uygulaması ve Ekim Zamanının Etkileri. International Journal of Agricultural and Wildlife Sciences, 7(1), 137-145. https://doi.org/10.24180/ijaws.822602

17365       17368       17367        17366      17369     17370