Research Article
BibTex RIS Cite
Year 2019, , 129 - 135, 31.12.2019
https://doi.org/10.32571/ijct.642886

Abstract

References

  • 1. Hlali, S.; Farji, A.; Hizem, N.; Militaru, L.;. Kalboussi, A.; Souifi, A. J. Alloys Compd. 2017, 713, 194-203.
  • 2. Karabulut, A.; Orak, I.; Turut, A. Int. J. Chem. Technol. 2018, 2 (2), 106-112.
  • 3. Kumar, V.; Kaminski, N.; Maan, A.S.; Akhtar, J. Phys. Status Solidi A. 2016, 213 (1) 193-202.
  • 4. Nicollian, E. H.; Bews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology, A.Wiley-Interscience Publication, John Wiley & Sons, New York, 1982.
  • 5. Karabulut, A. Bull. Mater. Sci. 2019, 42:5.
  • 6. Altindal, Ş.; Asar, Y. Ş.; Kaya, A.; Sonmez, Z. J. Optoelectron. Adv. Mater. 2012, 14 (11-12), 998-1004.
  • 7. Turut, A.; Yalcin, N.; Saglam, M. Solid State Electron. 1992, 35 (6), 835-841.
  • 8. Bati, B.; Nuhoglu, C.; Saglam, M.; Ayyildiz, E.; Turut, A. Phys. Scripta. 2000, 61, 209-212.
  • 9. Cetinkaya, A. O.; Kaya, S.; Aktag, A.; Budak, E.; Yilmaz, E. Thin Solid Films 2015, 590, 7-12.
  • 10. Cetinkara, H. A, Turut, A., Zengin, D. M.; Erel, S. Appl. Surf. Sci. 2003, 207190-207199.
  • 11. https://en.wikipedia.org/wiki/RCA_clean
  • 12. Sze, S. M. Physics of Semiconductor Devices, 2nd Ed., John Wiley & Sons, Inc. New York, 1981.
  • 13. Hill, W.; Coleman, C. Solid-State Electron. 1980, 23 (9), 1987-1993.
  • 14. Neamen, D. A. Semiconductor Physics and Devices, Irwin, Boston, 1992.
  • 15. Manthrammel , M. A.; Yahia, I. S.; Shkira, M.; AlFaify, S.; Zahran, H. Y.; Ganesh, V.; Yakuphanoglu, F. Solid State Sci. 2019, 93, 7-12.
  • 16. Turut, A.; Karabulut, A.; Ejderha, K.; Bıyıklı, N. Mater. Sci. Semicond. Process. 2015, 39, 400-407.
  • 17. Kim, C. H.; Yaghmazadeh, O.; Tondelier, D.; Jeong, Y. B.; Bonnassieux, Y.; Horowitz, G. J. Appl. Phys. 2011, 109, 083710.

Effect of measurement frequency on admittance characteristics in Al/p-Si structures with interfacial native oxide layer

Year 2019, , 129 - 135, 31.12.2019
https://doi.org/10.32571/ijct.642886

Abstract

Al/p-Si/Al diodes with interfacial native oxide layer were formed.
Their frequency induced admittance-voltage measurements were made. The
frequency-dependent density distribution of interface states has been
determined from the corrected characteristics by considering the series
resistance effect which masks the interface trap loss. The majority carrier
density corresponding to the depletion and inversion parts of the C-2-V curve, was determined 1.82 x 1014
and 4.48 x 1014  cm-3
at 1000 kHz, respectively. The fact that the carrier density obtained from the
inversion part of the plot is higher than that obtained from the depletion part
can be related to the increase in the density of negative space charge in the
depletion region.The value of
 was determined as
0.95 eV from the same plot.
Interface
state density decreased from 4.31 x 1012 eV-1cm-2
at 100 kHz to 7.30 x 1011 eV-1 cm-2 at 1000
kHz, because the interface charges do not follow the ac signal and do not contribute to capacitance values in high
frequencies.

References

  • 1. Hlali, S.; Farji, A.; Hizem, N.; Militaru, L.;. Kalboussi, A.; Souifi, A. J. Alloys Compd. 2017, 713, 194-203.
  • 2. Karabulut, A.; Orak, I.; Turut, A. Int. J. Chem. Technol. 2018, 2 (2), 106-112.
  • 3. Kumar, V.; Kaminski, N.; Maan, A.S.; Akhtar, J. Phys. Status Solidi A. 2016, 213 (1) 193-202.
  • 4. Nicollian, E. H.; Bews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology, A.Wiley-Interscience Publication, John Wiley & Sons, New York, 1982.
  • 5. Karabulut, A. Bull. Mater. Sci. 2019, 42:5.
  • 6. Altindal, Ş.; Asar, Y. Ş.; Kaya, A.; Sonmez, Z. J. Optoelectron. Adv. Mater. 2012, 14 (11-12), 998-1004.
  • 7. Turut, A.; Yalcin, N.; Saglam, M. Solid State Electron. 1992, 35 (6), 835-841.
  • 8. Bati, B.; Nuhoglu, C.; Saglam, M.; Ayyildiz, E.; Turut, A. Phys. Scripta. 2000, 61, 209-212.
  • 9. Cetinkaya, A. O.; Kaya, S.; Aktag, A.; Budak, E.; Yilmaz, E. Thin Solid Films 2015, 590, 7-12.
  • 10. Cetinkara, H. A, Turut, A., Zengin, D. M.; Erel, S. Appl. Surf. Sci. 2003, 207190-207199.
  • 11. https://en.wikipedia.org/wiki/RCA_clean
  • 12. Sze, S. M. Physics of Semiconductor Devices, 2nd Ed., John Wiley & Sons, Inc. New York, 1981.
  • 13. Hill, W.; Coleman, C. Solid-State Electron. 1980, 23 (9), 1987-1993.
  • 14. Neamen, D. A. Semiconductor Physics and Devices, Irwin, Boston, 1992.
  • 15. Manthrammel , M. A.; Yahia, I. S.; Shkira, M.; AlFaify, S.; Zahran, H. Y.; Ganesh, V.; Yakuphanoglu, F. Solid State Sci. 2019, 93, 7-12.
  • 16. Turut, A.; Karabulut, A.; Ejderha, K.; Bıyıklı, N. Mater. Sci. Semicond. Process. 2015, 39, 400-407.
  • 17. Kim, C. H.; Yaghmazadeh, O.; Tondelier, D.; Jeong, Y. B.; Bonnassieux, Y.; Horowitz, G. J. Appl. Phys. 2011, 109, 083710.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Muhammed Can Özdemir 0000-0002-4002-7967

Ömer Sevgili 0000-0003-1740-1444

İkram Orak 0000-0003-2318-9718

Abdülmecit Türüt 0000-0002-4664-4528

Publication Date December 31, 2019
Published in Issue Year 2019

Cite

APA Özdemir, M. C., Sevgili, Ö., Orak, İ., Türüt, A. (2019). Effect of measurement frequency on admittance characteristics in Al/p-Si structures with interfacial native oxide layer. International Journal of Chemistry and Technology, 3(2), 129-135. https://doi.org/10.32571/ijct.642886
AMA Özdemir MC, Sevgili Ö, Orak İ, Türüt A. Effect of measurement frequency on admittance characteristics in Al/p-Si structures with interfacial native oxide layer. Int. J. Chem. Technol. December 2019;3(2):129-135. doi:10.32571/ijct.642886
Chicago Özdemir, Muhammed Can, Ömer Sevgili, İkram Orak, and Abdülmecit Türüt. “Effect of Measurement Frequency on Admittance Characteristics in Al/P-Si Structures With Interfacial Native Oxide Layer”. International Journal of Chemistry and Technology 3, no. 2 (December 2019): 129-35. https://doi.org/10.32571/ijct.642886.
EndNote Özdemir MC, Sevgili Ö, Orak İ, Türüt A (December 1, 2019) Effect of measurement frequency on admittance characteristics in Al/p-Si structures with interfacial native oxide layer. International Journal of Chemistry and Technology 3 2 129–135.
IEEE M. C. Özdemir, Ö. Sevgili, İ. Orak, and A. Türüt, “Effect of measurement frequency on admittance characteristics in Al/p-Si structures with interfacial native oxide layer”, Int. J. Chem. Technol., vol. 3, no. 2, pp. 129–135, 2019, doi: 10.32571/ijct.642886.
ISNAD Özdemir, Muhammed Can et al. “Effect of Measurement Frequency on Admittance Characteristics in Al/P-Si Structures With Interfacial Native Oxide Layer”. International Journal of Chemistry and Technology 3/2 (December 2019), 129-135. https://doi.org/10.32571/ijct.642886.
JAMA Özdemir MC, Sevgili Ö, Orak İ, Türüt A. Effect of measurement frequency on admittance characteristics in Al/p-Si structures with interfacial native oxide layer. Int. J. Chem. Technol. 2019;3:129–135.
MLA Özdemir, Muhammed Can et al. “Effect of Measurement Frequency on Admittance Characteristics in Al/P-Si Structures With Interfacial Native Oxide Layer”. International Journal of Chemistry and Technology, vol. 3, no. 2, 2019, pp. 129-35, doi:10.32571/ijct.642886.
Vancouver Özdemir MC, Sevgili Ö, Orak İ, Türüt A. Effect of measurement frequency on admittance characteristics in Al/p-Si structures with interfacial native oxide layer. Int. J. Chem. Technol. 2019;3(2):129-35.