Araştırma Makalesi
BibTex RIS Kaynak Göster

Teleparallel Energy Density within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model

Yıl 2024, , 283 - 289, 30.06.2024
https://doi.org/10.29132/ijpas.1480871

Öz

It is known that the general theory of relativity provides valuable answers about our universe. General relativity theory is used to describe space, time, and mass-energy interactions, while quantum theory is used to explain the behavior and interactions of microscopic particles. The gap between these two theories reveals the need to develop a unified theory of "quantum gravity". However, so far no universal theory has yet been found that fully resolves this conflict. This is a big puzzle that physicists have been working on for a long time, and unifying these two theories harmoniously is one of the biggest challenges in modern physics. One of the theories put forward for this purpose is the "Rainbow" theory of gravity. In this study, Einstein, Bergmann-Thomson and Landau-Lifshitz energy densities are calculated for a spatial self-similar, locally rotationally symmetric model using teleparallel geometry within the framework of the Rainbow theory of gravity. However, the results obtained are evaluated using rainbow functions that are well known in the literature. The obtained results are rewritten as explicit forms of energy densities for Einstein, Bergman-Thomson and Landau-Liftshitz representations using f_1 (\chi)=1/(1-\chi)and f_2 (\chi)=1 rainbow functions. Accordingly, it has been shown that the test particle changes its energy density for the Einstein and Bergmann-Thomson energy-momentum prescriptions but does not change the energy density for the Landau-Liftshitz energy-momentum prescription.

Kaynakça

  • Moller, C. (1958). On the localization of the energy of a physical system in the general theory of relativity. Ann. Phys. 4, 347-371.
  • Virbhadra, K. S. (1990). Energy associated with a Kerr-Newman black hole. Physical Review D, 41(4), 1086-1090.
  • Xulu, S. S. (2003). The Energy-Momentum Problem in General Relativity, arXiv:hep-th/0308070.
  • Sharif M. and Fatima T. (2005). Energy-momentum distribution: a crucial problem in general relativity, Int. J. Mod. Phys. A, 20, 4309-4330.
  • Salti M. and Havare A. (2005). Energy-momentum in viscous Kasner-type universe in Bergmann-Thomson formulations, Int. J. Mod. Phys. A, 20, 2169-2177.
  • Aydogdu O. and Salti M. (2006). Energy density associated with the Bianchi type-II space-time, Prog. Theor. Phys., 115, 63-71.
  • Vargas, T. (2004). The energy of the universe in teleparallel gravity. General Relativity and Gravitation, 36, 1255-1263.
  • Pereira, J. G., Vargas, T. and Zhang, C. M. (2001). Axial-vector torsion and the teleparallel Kerr spacetime. Classical and Quantum Gravity, 18(5), 833-842.
  • Sharif, M. and Jamil Amir, M. (2007). Teleparallel energy–momentum distribution of lewis–papapetrou spacetimes. Modern Physics Letters A, 22(06), 425-434.
  • Salti, M. and Aydogdu, O. (2006). Energy in the Schwarzschild-de Sitter spacetime. Foun-dations of Physics Letters, 19, 269-276.
  • Aydogdu, O., Saltı, M. and Korunur, M. (2005). Energy in Rebou-cas-Tiomno-Korotkii-Obukhov and Godel-type space-times in Bergmann-Thomson's for-mulations. Acta Phys. Slov., 55, 537-548.
  • Aygün, S. and Tarhan, İ. (2012). Energy–momentum localization for Bianchi type-IV Uni-verse in general relativity and teleparallel gravity. Pramana - J Phys., 78, 531–548.
  • Magueijo, J. and Smolin, L. (2004). Gravity's rainbow. Classical and Quantum Gravity, 21(7), 1725-1736.
  • Hayashi K. and Shirafuji, T. (1979). New general relativity. Phys. Rev. D 19(12), 3524-3553.
  • Chao, W. Z. (1981). Self-similar cosmological models. General Relativity and Gravitation, 13, 625-647.
  • Feng, Z. W. and Yang, S. Z. (2017). Thermodynamic phase transition of a black hole in rainbow gravity. Physics Letters B, 772, 737-742.
Yıl 2024, , 283 - 289, 30.06.2024
https://doi.org/10.29132/ijpas.1480871

Öz

Kaynakça

  • Moller, C. (1958). On the localization of the energy of a physical system in the general theory of relativity. Ann. Phys. 4, 347-371.
  • Virbhadra, K. S. (1990). Energy associated with a Kerr-Newman black hole. Physical Review D, 41(4), 1086-1090.
  • Xulu, S. S. (2003). The Energy-Momentum Problem in General Relativity, arXiv:hep-th/0308070.
  • Sharif M. and Fatima T. (2005). Energy-momentum distribution: a crucial problem in general relativity, Int. J. Mod. Phys. A, 20, 4309-4330.
  • Salti M. and Havare A. (2005). Energy-momentum in viscous Kasner-type universe in Bergmann-Thomson formulations, Int. J. Mod. Phys. A, 20, 2169-2177.
  • Aydogdu O. and Salti M. (2006). Energy density associated with the Bianchi type-II space-time, Prog. Theor. Phys., 115, 63-71.
  • Vargas, T. (2004). The energy of the universe in teleparallel gravity. General Relativity and Gravitation, 36, 1255-1263.
  • Pereira, J. G., Vargas, T. and Zhang, C. M. (2001). Axial-vector torsion and the teleparallel Kerr spacetime. Classical and Quantum Gravity, 18(5), 833-842.
  • Sharif, M. and Jamil Amir, M. (2007). Teleparallel energy–momentum distribution of lewis–papapetrou spacetimes. Modern Physics Letters A, 22(06), 425-434.
  • Salti, M. and Aydogdu, O. (2006). Energy in the Schwarzschild-de Sitter spacetime. Foun-dations of Physics Letters, 19, 269-276.
  • Aydogdu, O., Saltı, M. and Korunur, M. (2005). Energy in Rebou-cas-Tiomno-Korotkii-Obukhov and Godel-type space-times in Bergmann-Thomson's for-mulations. Acta Phys. Slov., 55, 537-548.
  • Aygün, S. and Tarhan, İ. (2012). Energy–momentum localization for Bianchi type-IV Uni-verse in general relativity and teleparallel gravity. Pramana - J Phys., 78, 531–548.
  • Magueijo, J. and Smolin, L. (2004). Gravity's rainbow. Classical and Quantum Gravity, 21(7), 1725-1736.
  • Hayashi K. and Shirafuji, T. (1979). New general relativity. Phys. Rev. D 19(12), 3524-3553.
  • Chao, W. Z. (1981). Self-similar cosmological models. General Relativity and Gravitation, 13, 625-647.
  • Feng, Z. W. and Yang, S. Z. (2017). Thermodynamic phase transition of a black hole in rainbow gravity. Physics Letters B, 772, 737-742.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kuantum Fiziği (Diğer)
Bölüm Makaleler
Yazarlar

Sibel Korunur 0000-0003-0687-2400

Murat Korunur 0000-0002-8311-9079

Erken Görünüm Tarihi 28 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 8 Mayıs 2024
Kabul Tarihi 16 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Korunur, S., & Korunur, M. (2024). Teleparallel Energy Density within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model. International Journal of Pure and Applied Sciences, 10(1), 283-289. https://doi.org/10.29132/ijpas.1480871
AMA Korunur S, Korunur M. Teleparallel Energy Density within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model. International Journal of Pure and Applied Sciences. Haziran 2024;10(1):283-289. doi:10.29132/ijpas.1480871
Chicago Korunur, Sibel, ve Murat Korunur. “Teleparallel Energy Density Within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model”. International Journal of Pure and Applied Sciences 10, sy. 1 (Haziran 2024): 283-89. https://doi.org/10.29132/ijpas.1480871.
EndNote Korunur S, Korunur M (01 Haziran 2024) Teleparallel Energy Density within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model. International Journal of Pure and Applied Sciences 10 1 283–289.
IEEE S. Korunur ve M. Korunur, “Teleparallel Energy Density within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model”, International Journal of Pure and Applied Sciences, c. 10, sy. 1, ss. 283–289, 2024, doi: 10.29132/ijpas.1480871.
ISNAD Korunur, Sibel - Korunur, Murat. “Teleparallel Energy Density Within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model”. International Journal of Pure and Applied Sciences 10/1 (Haziran 2024), 283-289. https://doi.org/10.29132/ijpas.1480871.
JAMA Korunur S, Korunur M. Teleparallel Energy Density within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model. International Journal of Pure and Applied Sciences. 2024;10:283–289.
MLA Korunur, Sibel ve Murat Korunur. “Teleparallel Energy Density Within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model”. International Journal of Pure and Applied Sciences, c. 10, sy. 1, 2024, ss. 283-9, doi:10.29132/ijpas.1480871.
Vancouver Korunur S, Korunur M. Teleparallel Energy Density within the Framework of Rainbow Gravitation Theory for A Spatial Self-Similar, Local Rotational Symmetric Model. International Journal of Pure and Applied Sciences. 2024;10(1):283-9.

154501544915448154471544615445