Research Article
BibTex RIS Cite

The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis

Year 2024, Volume: 10 Issue: 1, 202 - 208, 30.06.2024
https://doi.org/10.29132/ijpas.1464763

Abstract

The ionosphere is a conductive and natural plasma layer of the atmosphere that starts from 50 km above the ground and continues up to approximately 1000 km. To neglect the magnetic field effect on the ionosphere, both vertical and horizontal ionosondes are used to detect the electron density of the ionosphere in many parts of the Earth. In this study, in ionosphere plasma; Without any approximation, the phase and group velocities of the ordinari wave, which is independent of the magnetic field in the collisional ionosphere plasma (electron-ion; electron-neutral), were obtained analyt-ically and its seasonal behavior was calculated numerically. According to the results obtained; There is a strong similarity between the change trends in the phase and group velocities of the ordinari wave at local times of 05:00 in the morning and 20:00 in the evening. It can be said that in these time intervals in the E and F regions of the ionosphere, the wave energy is constant and the directions of the phase and group velocities are in the same direction but in opposite directions.

References

  • Rishbeth, H. (1967). A review of ionospheric F region theory. Proceedings of the IEEE, 55(1), 16-35.
  • Rishbeth, H., & Garriott, O. K. (1969). Introduction to Ionospheric Physics (v. 14). Amsterdam: Academic Press.
  • Rishbeth, H. (1973). Physics and chemistry of the ionosphere. Contemporary Physics, 14(3), 229-249.
  • Swanson, D. G. (1989). Plasma waves. London: Academic Press.
  • Budden, K. G., and Stott, G. F. (1980). Rays in magneto-ionic theory-II. Journal of Atmospheric and Terrestrial Physics, 42(9-10), 791-800.
  • Budden, K. G. (1988). The propagation of radio waves: the theory of radio waves of low power in the ionosphere and magnetosphere. Cambridge: Cambridge University Press.
  • Richard, F. (2014). The Physics of Plasma. New York: CRC press, pp. 50-140.
  • Rawer, K. (1993). Wave Propagation in the Ionosphere. London: Kluwer Academic Publishers,
  • Whitten, R.C. and Popoff, I.G. (1971). Fundamentals of Aeronomy. New York: John Willey and Sons.
  • Timoçin, E., Yeşil, A., and Ünal, İ. (2014). The effect of the geomagnetic activity to the hourly variations of ionospheric fo F2 values at low latitudes. Arabian Journal of Geosciences, 7, 4437-4442.
  • Timoçin, E., Yeşil, A., and Ünal, İ. (2020). The responses of ionospheric conductivities on the mid-latitudes to changes in the bz component of interplanetary magnetic field. Wireless Personal Communications, 114, 2923-2932.
  • Yesil, A., and Kurt, K. (2018). Calculation of electric field strength in the ionospheric F-region. Thermal Science, 22(Suppl. 1), 159-164.
  • Yeşil, A., and Sağır, S. (2019). Updating conductivity tensor of cold and warm plasma for equatorial ionosphere F2-region in the Northern Hemisphere. Iranian Journal of Science and Technology, Transactions A: Science, 43, 315-320.
  • Sağır, S., and Yeşil, A. (2018). The relation between the refractive index of the equatorial iono-spheric F2 region and long-term solar indices. Wireless Personal Communications, 102 (1), 31-40.
  • Sagir, S., Yesil, A., Sanac, G., and Unal, I. (2014). The characterization of diffusion tensor for mid-latitude ionospheric plasma. Annals of Geophysics, 57(2), A0216.
  • Ünal, İ., Şenalp, E. T., Yeşil, A., Tulunay, E., and Tulunay, Y. (2011). Performance of IRI-based ionospheric critical frequency calculations with reference to forecasting. Radio Science, 46(01), 1-10.
  • Yasar, M. (2021). The change of diffusion processes for reaction in the ionospheric F region during the solar eclipse over Kharkov. Thermal Science, 25(Spec. issue 1), 51-56.
  • Sağir, S., Yaşar, M., and Atici, R. (2019). The Relationship between Dst, IMF-Bz and collision parameters for reactive scattering in the ionosphere. Geomagnetism and Aernomy, 59, 1003-1008.
  • Hunsucker, R. D., and Hargreaves, J. K. (2007). The high-latitude ionosphere and its effects on radio propagation. Cambridge: Cambridge University Press.
  • Yesil, A. (2006). The effect of the electron temperature on the electric polarization coefficient of ionospheric plasma. International Journal of Science & Technology, 1(2), 125-130.

İyonküredeki Ordinari Dalganın Grup ve Faz Hızı; Tam Çözüm ve Sayısal Analizler

Year 2024, Volume: 10 Issue: 1, 202 - 208, 30.06.2024
https://doi.org/10.29132/ijpas.1464763

Abstract

İyonosfer yerden 50 km den başlayıp yaklaşık olarak 1000 km ye kadar devam eden atmosferin iletken ve doğal bir plazma tabakasıdır. İyonkürede manyetik alan etkisini ihmal etmek için hem dikey hem de yatay iyonosondalar, Dünya'nın birçok yerinde iyonosferin elektron yoğunluğunu tespit etmek için kullanılmaktadır. Bu çalışmada iyonküre plazmasında; hiçbir yaklaşım yap-madan, çarpışmalı iyonküre plazmasın-da(elektron-iyon; elektron-nötr) manyetik alandan bağımsız olan ordinari dalganın faz ve grup hızları analitik olarak elde edilerek, mevsimsel dav-ranışı nümerik olarak hesaplanmıştır. Elde edilen sonuçlara göre; ordinari dalganın faz ve grup hızları sabah saat 05.00 ve akşam saat 20.00 yerel zamanlarında değişim trendleri arasında kuvvetli bir benzerlik görülmektedir. İyonosferin E ve F bölgelerinde bu zaman aralıklarında dalga enerjisinin sabit, faz ve grup hızlarının yönlerinin aynı doğrultuda fakat zıt yönde olduğu söylenebilir.

References

  • Rishbeth, H. (1967). A review of ionospheric F region theory. Proceedings of the IEEE, 55(1), 16-35.
  • Rishbeth, H., & Garriott, O. K. (1969). Introduction to Ionospheric Physics (v. 14). Amsterdam: Academic Press.
  • Rishbeth, H. (1973). Physics and chemistry of the ionosphere. Contemporary Physics, 14(3), 229-249.
  • Swanson, D. G. (1989). Plasma waves. London: Academic Press.
  • Budden, K. G., and Stott, G. F. (1980). Rays in magneto-ionic theory-II. Journal of Atmospheric and Terrestrial Physics, 42(9-10), 791-800.
  • Budden, K. G. (1988). The propagation of radio waves: the theory of radio waves of low power in the ionosphere and magnetosphere. Cambridge: Cambridge University Press.
  • Richard, F. (2014). The Physics of Plasma. New York: CRC press, pp. 50-140.
  • Rawer, K. (1993). Wave Propagation in the Ionosphere. London: Kluwer Academic Publishers,
  • Whitten, R.C. and Popoff, I.G. (1971). Fundamentals of Aeronomy. New York: John Willey and Sons.
  • Timoçin, E., Yeşil, A., and Ünal, İ. (2014). The effect of the geomagnetic activity to the hourly variations of ionospheric fo F2 values at low latitudes. Arabian Journal of Geosciences, 7, 4437-4442.
  • Timoçin, E., Yeşil, A., and Ünal, İ. (2020). The responses of ionospheric conductivities on the mid-latitudes to changes in the bz component of interplanetary magnetic field. Wireless Personal Communications, 114, 2923-2932.
  • Yesil, A., and Kurt, K. (2018). Calculation of electric field strength in the ionospheric F-region. Thermal Science, 22(Suppl. 1), 159-164.
  • Yeşil, A., and Sağır, S. (2019). Updating conductivity tensor of cold and warm plasma for equatorial ionosphere F2-region in the Northern Hemisphere. Iranian Journal of Science and Technology, Transactions A: Science, 43, 315-320.
  • Sağır, S., and Yeşil, A. (2018). The relation between the refractive index of the equatorial iono-spheric F2 region and long-term solar indices. Wireless Personal Communications, 102 (1), 31-40.
  • Sagir, S., Yesil, A., Sanac, G., and Unal, I. (2014). The characterization of diffusion tensor for mid-latitude ionospheric plasma. Annals of Geophysics, 57(2), A0216.
  • Ünal, İ., Şenalp, E. T., Yeşil, A., Tulunay, E., and Tulunay, Y. (2011). Performance of IRI-based ionospheric critical frequency calculations with reference to forecasting. Radio Science, 46(01), 1-10.
  • Yasar, M. (2021). The change of diffusion processes for reaction in the ionospheric F region during the solar eclipse over Kharkov. Thermal Science, 25(Spec. issue 1), 51-56.
  • Sağir, S., Yaşar, M., and Atici, R. (2019). The Relationship between Dst, IMF-Bz and collision parameters for reactive scattering in the ionosphere. Geomagnetism and Aernomy, 59, 1003-1008.
  • Hunsucker, R. D., and Hargreaves, J. K. (2007). The high-latitude ionosphere and its effects on radio propagation. Cambridge: Cambridge University Press.
  • Yesil, A. (2006). The effect of the electron temperature on the electric polarization coefficient of ionospheric plasma. International Journal of Science & Technology, 1(2), 125-130.
There are 20 citations in total.

Details

Primary Language English
Subjects Atomic, Molecular and Optical Physics (Other)
Journal Section Articles
Authors

Kadri Kurt 0000-0002-6507-8234

Melik Buğra Yeşil 0000-0002-4668-6787

Gülay Yıldız 0009-0000-6788-3387

Early Pub Date June 28, 2024
Publication Date June 30, 2024
Submission Date April 4, 2024
Acceptance Date June 24, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Kurt, K., Yeşil, M. B., & Yıldız, G. (2024). The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis. International Journal of Pure and Applied Sciences, 10(1), 202-208. https://doi.org/10.29132/ijpas.1464763
AMA Kurt K, Yeşil MB, Yıldız G. The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis. International Journal of Pure and Applied Sciences. June 2024;10(1):202-208. doi:10.29132/ijpas.1464763
Chicago Kurt, Kadri, Melik Buğra Yeşil, and Gülay Yıldız. “The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis”. International Journal of Pure and Applied Sciences 10, no. 1 (June 2024): 202-8. https://doi.org/10.29132/ijpas.1464763.
EndNote Kurt K, Yeşil MB, Yıldız G (June 1, 2024) The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis. International Journal of Pure and Applied Sciences 10 1 202–208.
IEEE K. Kurt, M. B. Yeşil, and G. Yıldız, “The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis”, International Journal of Pure and Applied Sciences, vol. 10, no. 1, pp. 202–208, 2024, doi: 10.29132/ijpas.1464763.
ISNAD Kurt, Kadri et al. “The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis”. International Journal of Pure and Applied Sciences 10/1 (June 2024), 202-208. https://doi.org/10.29132/ijpas.1464763.
JAMA Kurt K, Yeşil MB, Yıldız G. The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis. International Journal of Pure and Applied Sciences. 2024;10:202–208.
MLA Kurt, Kadri et al. “The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis”. International Journal of Pure and Applied Sciences, vol. 10, no. 1, 2024, pp. 202-8, doi:10.29132/ijpas.1464763.
Vancouver Kurt K, Yeşil MB, Yıldız G. The Group and Phase Velocity of the Ordinary Wawe in the Ionosphere A Complete Solution and Numerical Analysis. International Journal of Pure and Applied Sciences. 2024;10(1):202-8.

154501544915448154471544615445