Research Article
BibTex RIS Cite

Antibacterial activities of Calendula officinalis callus extract

Year 2017, Volume: 4 Issue: 3, Special Issue 1, 257 - 263, 25.11.2017
https://doi.org/10.21448/ijsm.372108

Abstract

The purpose of this study was to determine the antibacterial activity of C. officinalis callus derived from cotyledon explants. Cotyledons excised from in vitro germinated seedlings were used as explants. Explants were transferred on MS medium supplemented with benzil amino purine (BAP; 2 mg l-1), α-naphthalene-acetic acid (NAA; 2 mg l-1) for callus studies. The cultures were maintained on the same media compositions and were sub-cultured at an interval of 4 weeks. Callus cultures were harvested at the end of the 16th week. Calli were dried at 40̊ C in the dark for antimicrobial studies. Calendula officinalis callus extracts were tested for their antibacterial activities by using agar well diffusion method. Ethanol and chloroform extracts from these plants were assayed against nine bacteria species (Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 25922, Bacillus cereus ATCC 7064, Bacillus subtilis ATCC 6633, Salmonella typhimurium CCM 5445, Proteus vulgaris ATCC 6896, Enterococcus faecalis ATCC 29212, Enterobacter cloacae ATCC 13047, and Kocuria rhizophila ATCC 9341). The test antibiotics penicillin G, novobiocin, amphicillin, chloramphenicol and erythromycin were used for comparison. Callus formation was observed at the end of the 5th week on cotyledon explants. C. officinalis callus extracts showed 38 mm inhibition zone against S. aureus, and chloroform extracts showed 32 mm inhibition zone against B. cereus. These results are very close to the test antibiotics used and C. officinalis is found more effective on gram positive bacteria.

References

  • Rao, S. R., & Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology advances, 20(2), 101-153.
  • Noor, A., Bansal, V. S., & Vijayalakshmi, M. A. (2013). Current update on anti-diabetic biomolecules from key traditional Indian medicinal plants. Current science, 721-727.
  • Erkoyuncu, M. T., & Yorgancılar, M. (2016). Bitki Doku Kültürü Yöntemleri İle Sekonder Metabolitlerin Üretimi. Selçuk Tarım Bilimleri Dergisi, 2(1), 66-76.
  • Bahri-Sahloul, R., Ben Fredj, R., Boughalleb, N., Shriaa, J., Saguem, S., Hilbert, J. L., & Harzallah-Skhiri, F. (2014). Phenolic composition and antioxidant and antimicrobial activities of extracts obtained from Crataegus azarolus L. var. aronia (Willd.) Batt. ovaries calli. Journal of Botany, 2014.
  • Davis, P. H. (1982). Flora of Turkey and the Aegean Islands. Vol. 8. Univ. Pres. Edinburgh.
  • Arora, D., Rani, A., & Sharma, A. (2013). A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacognosy reviews, 7(14), 179.
  • Teiten, M. H., Gaascht, F., Dicato, M., & Diederich, M. (2013). Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochemical pharmacology, 86(9), 1239-1247.
  • Iauk, L., Lo Bue, A. M., Milazzo, I., Rapisarda, A., & Blandino, G. (2003). Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytotherapy Research, 17(6), 599-604.
  • Nabi, S., Ahmed, N., Khan, M. J., Bazai, Z., Yasinzai, M., & Al-Kahraman, Y. M. S. A. (2012). In vitro antileishmanial, antitumor activities and phytochemical studies of methanolic extract and its fractions of Juniperus Excelsa Berries. World Applied Sciences Journal, 19(10), 1495-1500.
  • Kalvatchev, Z., Walder, R., & Garzaro, D. (1997). Anti-HIV activity of extracts from Calendula officinalis flowers. Biomedicine & pharmacotherapy, 51(4), 176-180.
  • Ćetković, G. S., Djilas, S. M., Čanadanović-Brunet, J. M., & Tumbas, V. T. (2004). Antioxidant properties of marigold extracts. Food Research International, 37(7), 643-650.
  • Boucaud-Maitre, Y., Algernon, O., & Raynaud, J. (1988). Cytotoxic and antitumoral activity of Calendula officinalis extracts. Pharmazie, 43(3), 220-221.
  • De Tommasi, N., Conti, C., Stein, M. L., & Pizza, C. (1991). Structure and in vitro antiviral activity of triterpenoid saponins from Calendula arvensis. Planta medica, 57(03), 250-253. [14] Hamburger, M., Adler, S., Baumann, D., Förg, A., & Weinreich, B. (2003). Preparative purification of the major anti-inflammatory triterpenoid esters from Marigold (Calendula officinalis). Fitoterapia, 74(4), 328-338.
  • Zitterl-Eglseer, K., Sosa, S., Jurenitsch, J., Schubert-Zsilavecz, M., Della Loggia, R., Tubaro, A., … & Franz, C. (1997). Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L.). Journal of ethnopharmacology, 57(2), 139-144.
  • Marukami, T., Kishi, A., & Yoshikawa, M. (2001). Medicinal flowers. IV. Marigold.(2): Structures of new ionone and sesquiterpene glycosides from Egyptian Calendula officinalis. Chemical and pharmaceutical bulletin, 49(8), 974-978.
  • Shipochliev, T. (1981). Uterotonic action of extracts from a group of medicinal plants. Veterinarno-meditsinski nauki, 18(4), 94-98.
  • Duran, V., Matic, M., Jovanovć, M., Mimica, N., Gajinov, Z., Poljacki, M., & Boza, P. (2005). Results of the clinical examination of an ointment with marigold (Calendula officinalis) extract in the treatment of venous leg ulcers. International journal of tissue reactions, 27(3), 101-106.
  • Ugulu, I., Baslar, S., Yorek, N., & Dogan, Y. (2009). The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province, Turkey. Journal of Medicinal plants research, 3(5), 345-367.
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.
  • Oskay, M., & Sarı, D. (2007). Antimicrobial screening of some Turkish medicinal plants. Pharmaceutical Biology, 45(3), 176-181.
  • Kalyoncu, F., & Oskay, M. (2008). Antimicrobial activities of four wild mushroom species collected from Turkey. In Mushroom biology and mushroom products. Proceedings of the Sixth International Conference on Mushroom Biology and Mushroom Products, Bonn, Germany, 29 September-3 October, 2008 (pp. 31-35). GAMU GmbH, Institut für Pilzforschung.
  • Dias, M. I., Sousa, M. J., Alves, R. C., & Ferreira, I. C. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products, 82, 9-22.
  • Shukla, M. R., Singh, A. S., Piunno, K., Saxena, P. K., & Jones, A. M. P. (2017). Application of 3D printing to prototype and develop novel plant tissue culture systems. Plant Methods, 13(1), 6.
  • Kocaçalışkan, İ. (2008). Bitki Doku Kültürleri (Organ, Doku ve Hücre)(ISBN: 978-975-8201-47-6). DPÜ, Fen Edebiyat Fakültesi, Biyoloji Bölümü, Kütahya.
  • Ghasempour, H., Soheilikhah, Z., Zebarjadi, A. R., Ghasempour, S., & Karimi, N. (2014). In vitro micro propagation, callus induction and shoot regeneration in safflower L. cv. Lesaf.
  • Ilahi, I. H. S. A. N., Jabeen, M., & Sadaf, S. N. (2007). Rapid clonal propagation of Chrysanthemum through embryogenic callus formation. Pak. J. Bot, 39(6), 1945-1952.
  • Patel, R. M., & Shah, R. R. (2009). Regeneration of Stevia plant through callus culture. Indian journal of pharmaceutical sciences, 71(1), 46.
  • Wani, M., Pande, S., & More, N. (2010). Callus induction studies in Tridax procumbens L. International Journal of Biotechnology Applications, 2(1), 11-14.
  • Jain, S. C., Pancholi, B., & Jain, R. (2012). In-vitro Callus Propagation and Secondary Metabolite Quantification in Sericostoma pauciflorum. Iranian journal of pharmaceutical research: IJPR, 11(4), 1103.
  • Szopa, A., & Ekiert, H. (2014). Production of biologically active phenolic acids in Aronia melanocarpa (Michx.) Elliott in vitro cultures cultivated on different variants of the Murashige and Skoog medium. Plant growth regulation, 72(1), 51-58.
  • Yildirim, A. B., & Turker, A. U. (2014). Effects of regeneration enhancers on micropropagation of Fragaria vesca L. and phenolic content comparison of field-grown and in vitro-grown plant materials by liquid chromatography-electrospray tandem mass spectrometry (LC–ESI-MS/MS). Scientia Horticulturae, 169, 169-178.
  • Chiruvella, K. K., Mohammed, A., Dampuri, G., Ghanta, R. G., & Raghavan, S. C. (2007). Phytochemical and antimicrobial studies of methyl angolensate and luteolin-7-O-glucoside isolated from callus cultures of Soymida febrifuga. International journal of biomedical science: IJBS, 3(4), 269.
  • Cetin, B., & Kalyoncu, F. (2011). Antimicrobial Activity of Extracts from the Callus Culture of Rubia tinctorum L. Journal of Pure And Applied Microbiology, 5(2), 903-907.
  • Ahire, M. L., Ghane, S. G., Lokhande, V. H., Suprasanna, P., & Nikam, T. D. (2011). Micropropagation of Uraria picta through adventitious bud regeneration and antimicrobial activity of callus. In Vitro Cellular & Developmental Biology-Plant, 47(4), 488.
  • Magda, M. A., El Nour, M. E., Hassan, A. A. E. L., & Ezzdeen, L. T. (2015). Antibacterial activities of seeds, leaves and callus (hypocotyls and cotyledons) extracts of Jatropha curcas L. Int. J. Biosci, 6(11), 58-63.
  • Rohela, G. K., Bylla, P., Korra, R., & Reuben, C. (2016). Phytochemical Screening and Antimicrobial Activity of Leaf, Stem, Root and their Callus Extracts in Rauwolfia tetraphylla. International Journal of Agriculture & Biology, 18(3).

Antibacterial activities of Calendula officinalis callus extract

Year 2017, Volume: 4 Issue: 3, Special Issue 1, 257 - 263, 25.11.2017
https://doi.org/10.21448/ijsm.372108

Abstract

The purpose of this study was to determine the antibacterial
activity of C. officinalis callus derived
from cotyledon explants. Cotyledons excised from in vitro germinated seedlings were used as explants. Explants were transferred
on MS medium supplemented with benzil amino purine (BAP; 2 mg l-1), α-naphthalene-acetic
acid (NAA; 2 mg l-1) for callus studies. The cultures were maintained
on the same media compositions and were sub-cultured at an interval of 4 weeks.
Callus cultures were harvested at the end of the 16th week. Calli were dried at
40̊ C in the dark for antimicrobial studies. Calendula officinalis callus extracts were tested for their antibacterial
activities by using agar well diffusion method. Ethanol and chloroform extracts
from these plants were assayed against nine bacteria species (Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 25922, Bacillus cereus ATCC 7064, Bacillus subtilis ATCC 6633, Salmonella typhimurium CCM 5445, Proteus vulgaris ATCC 6896, Enterococcus faecalis ATCC 29212, Enterobacter cloacae ATCC 13047, and Kocuria rhizophila ATCC 9341). The test antibiotics
penicillin G, novobiocin, amphicillin, chloramphenicol and erythromycin were used
for comparison. Callus formation was observed at the end of the 5th week on cotyledon
explants. C. officinalis callus extracts
showed 38 mm inhibition zone against S. aureus,
and chloroform extracts showed 32 mm inhibition zone against B. cereus. These results are very close to
the test antibiotics used and C. officinalis
is found more effective on gram positive bacteria.

References

  • Rao, S. R., & Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology advances, 20(2), 101-153.
  • Noor, A., Bansal, V. S., & Vijayalakshmi, M. A. (2013). Current update on anti-diabetic biomolecules from key traditional Indian medicinal plants. Current science, 721-727.
  • Erkoyuncu, M. T., & Yorgancılar, M. (2016). Bitki Doku Kültürü Yöntemleri İle Sekonder Metabolitlerin Üretimi. Selçuk Tarım Bilimleri Dergisi, 2(1), 66-76.
  • Bahri-Sahloul, R., Ben Fredj, R., Boughalleb, N., Shriaa, J., Saguem, S., Hilbert, J. L., & Harzallah-Skhiri, F. (2014). Phenolic composition and antioxidant and antimicrobial activities of extracts obtained from Crataegus azarolus L. var. aronia (Willd.) Batt. ovaries calli. Journal of Botany, 2014.
  • Davis, P. H. (1982). Flora of Turkey and the Aegean Islands. Vol. 8. Univ. Pres. Edinburgh.
  • Arora, D., Rani, A., & Sharma, A. (2013). A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacognosy reviews, 7(14), 179.
  • Teiten, M. H., Gaascht, F., Dicato, M., & Diederich, M. (2013). Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochemical pharmacology, 86(9), 1239-1247.
  • Iauk, L., Lo Bue, A. M., Milazzo, I., Rapisarda, A., & Blandino, G. (2003). Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytotherapy Research, 17(6), 599-604.
  • Nabi, S., Ahmed, N., Khan, M. J., Bazai, Z., Yasinzai, M., & Al-Kahraman, Y. M. S. A. (2012). In vitro antileishmanial, antitumor activities and phytochemical studies of methanolic extract and its fractions of Juniperus Excelsa Berries. World Applied Sciences Journal, 19(10), 1495-1500.
  • Kalvatchev, Z., Walder, R., & Garzaro, D. (1997). Anti-HIV activity of extracts from Calendula officinalis flowers. Biomedicine & pharmacotherapy, 51(4), 176-180.
  • Ćetković, G. S., Djilas, S. M., Čanadanović-Brunet, J. M., & Tumbas, V. T. (2004). Antioxidant properties of marigold extracts. Food Research International, 37(7), 643-650.
  • Boucaud-Maitre, Y., Algernon, O., & Raynaud, J. (1988). Cytotoxic and antitumoral activity of Calendula officinalis extracts. Pharmazie, 43(3), 220-221.
  • De Tommasi, N., Conti, C., Stein, M. L., & Pizza, C. (1991). Structure and in vitro antiviral activity of triterpenoid saponins from Calendula arvensis. Planta medica, 57(03), 250-253. [14] Hamburger, M., Adler, S., Baumann, D., Förg, A., & Weinreich, B. (2003). Preparative purification of the major anti-inflammatory triterpenoid esters from Marigold (Calendula officinalis). Fitoterapia, 74(4), 328-338.
  • Zitterl-Eglseer, K., Sosa, S., Jurenitsch, J., Schubert-Zsilavecz, M., Della Loggia, R., Tubaro, A., … & Franz, C. (1997). Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L.). Journal of ethnopharmacology, 57(2), 139-144.
  • Marukami, T., Kishi, A., & Yoshikawa, M. (2001). Medicinal flowers. IV. Marigold.(2): Structures of new ionone and sesquiterpene glycosides from Egyptian Calendula officinalis. Chemical and pharmaceutical bulletin, 49(8), 974-978.
  • Shipochliev, T. (1981). Uterotonic action of extracts from a group of medicinal plants. Veterinarno-meditsinski nauki, 18(4), 94-98.
  • Duran, V., Matic, M., Jovanovć, M., Mimica, N., Gajinov, Z., Poljacki, M., & Boza, P. (2005). Results of the clinical examination of an ointment with marigold (Calendula officinalis) extract in the treatment of venous leg ulcers. International journal of tissue reactions, 27(3), 101-106.
  • Ugulu, I., Baslar, S., Yorek, N., & Dogan, Y. (2009). The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province, Turkey. Journal of Medicinal plants research, 3(5), 345-367.
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.
  • Oskay, M., & Sarı, D. (2007). Antimicrobial screening of some Turkish medicinal plants. Pharmaceutical Biology, 45(3), 176-181.
  • Kalyoncu, F., & Oskay, M. (2008). Antimicrobial activities of four wild mushroom species collected from Turkey. In Mushroom biology and mushroom products. Proceedings of the Sixth International Conference on Mushroom Biology and Mushroom Products, Bonn, Germany, 29 September-3 October, 2008 (pp. 31-35). GAMU GmbH, Institut für Pilzforschung.
  • Dias, M. I., Sousa, M. J., Alves, R. C., & Ferreira, I. C. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products, 82, 9-22.
  • Shukla, M. R., Singh, A. S., Piunno, K., Saxena, P. K., & Jones, A. M. P. (2017). Application of 3D printing to prototype and develop novel plant tissue culture systems. Plant Methods, 13(1), 6.
  • Kocaçalışkan, İ. (2008). Bitki Doku Kültürleri (Organ, Doku ve Hücre)(ISBN: 978-975-8201-47-6). DPÜ, Fen Edebiyat Fakültesi, Biyoloji Bölümü, Kütahya.
  • Ghasempour, H., Soheilikhah, Z., Zebarjadi, A. R., Ghasempour, S., & Karimi, N. (2014). In vitro micro propagation, callus induction and shoot regeneration in safflower L. cv. Lesaf.
  • Ilahi, I. H. S. A. N., Jabeen, M., & Sadaf, S. N. (2007). Rapid clonal propagation of Chrysanthemum through embryogenic callus formation. Pak. J. Bot, 39(6), 1945-1952.
  • Patel, R. M., & Shah, R. R. (2009). Regeneration of Stevia plant through callus culture. Indian journal of pharmaceutical sciences, 71(1), 46.
  • Wani, M., Pande, S., & More, N. (2010). Callus induction studies in Tridax procumbens L. International Journal of Biotechnology Applications, 2(1), 11-14.
  • Jain, S. C., Pancholi, B., & Jain, R. (2012). In-vitro Callus Propagation and Secondary Metabolite Quantification in Sericostoma pauciflorum. Iranian journal of pharmaceutical research: IJPR, 11(4), 1103.
  • Szopa, A., & Ekiert, H. (2014). Production of biologically active phenolic acids in Aronia melanocarpa (Michx.) Elliott in vitro cultures cultivated on different variants of the Murashige and Skoog medium. Plant growth regulation, 72(1), 51-58.
  • Yildirim, A. B., & Turker, A. U. (2014). Effects of regeneration enhancers on micropropagation of Fragaria vesca L. and phenolic content comparison of field-grown and in vitro-grown plant materials by liquid chromatography-electrospray tandem mass spectrometry (LC–ESI-MS/MS). Scientia Horticulturae, 169, 169-178.
  • Chiruvella, K. K., Mohammed, A., Dampuri, G., Ghanta, R. G., & Raghavan, S. C. (2007). Phytochemical and antimicrobial studies of methyl angolensate and luteolin-7-O-glucoside isolated from callus cultures of Soymida febrifuga. International journal of biomedical science: IJBS, 3(4), 269.
  • Cetin, B., & Kalyoncu, F. (2011). Antimicrobial Activity of Extracts from the Callus Culture of Rubia tinctorum L. Journal of Pure And Applied Microbiology, 5(2), 903-907.
  • Ahire, M. L., Ghane, S. G., Lokhande, V. H., Suprasanna, P., & Nikam, T. D. (2011). Micropropagation of Uraria picta through adventitious bud regeneration and antimicrobial activity of callus. In Vitro Cellular & Developmental Biology-Plant, 47(4), 488.
  • Magda, M. A., El Nour, M. E., Hassan, A. A. E. L., & Ezzdeen, L. T. (2015). Antibacterial activities of seeds, leaves and callus (hypocotyls and cotyledons) extracts of Jatropha curcas L. Int. J. Biosci, 6(11), 58-63.
  • Rohela, G. K., Bylla, P., Korra, R., & Reuben, C. (2016). Phytochemical Screening and Antimicrobial Activity of Leaf, Stem, Root and their Callus Extracts in Rauwolfia tetraphylla. International Journal of Agriculture & Biology, 18(3).
There are 36 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Burcu Çetin

Fatih Kalyoncu

Betül Kurtuluş This is me

Publication Date November 25, 2017
Submission Date May 1, 2017
Published in Issue Year 2017 Volume: 4 Issue: 3, Special Issue 1

Cite

APA Çetin, B., Kalyoncu, F., & Kurtuluş, B. (2017). Antibacterial activities of Calendula officinalis callus extract. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 257-263. https://doi.org/10.21448/ijsm.372108
International Journal of Secondary Metabolite

e-ISSN: 2148-6905