Review
BibTex RIS Cite

Medical Nutrition Therapy and Nutritional Supplements for Maple Syrup Urine Disease

Year 2025, Volume: 10 Issue: 3, 516 - 523, 30.09.2025
https://doi.org/10.61399/ikcusbfd.1581400

Abstract

Maple syrup urine disease is a rare autosomal recessive congenital metabolic disorder in which branched-chain amino acids cannot be metabolized due to defects in the branched-chain α-ketoacid dehydrogenase enzyme complex. The inability to metabolize branched-chain amino acids results in the accumulation of branched-chain amino acids in plasma and related branched-chain ketoacids in urine. There are five subclinical phenotypes of the disease and dietary therapy and liver transplantation are among the available treatment modalities. Medical nutrition therapy has two phases: acute and long-term. A reduction in catabolism during acute episodes of metabolic crisis requires immediate nutritional intervention. After the regulation of acute metabolic crises, long-term nutritional therapy is initiated, in which the amount of branched-chain amino acids is restricted on the basis of the increased level of neurotoxic leucine. As nutritional support approaches in medical nutrition therapy, it has been reported that thiamine supplementation, which has been reported to increase patients' capacity to tolerate dietary branched-chain amino acids or the decrease in branched-chain amino acid levels in their plasma, and isoleucine and valine supplements, which are vital for growth and development, which have been reported to accelerate the decrease in plasma leucine levels and prevent various skin lesions, as well as L-carnitine and norleucine supplements may have positive effects on patients. Studied have shown that L-carnitine supplementation may have protective effects on DNA damage, prevent the oxidative damage to proteins and lipids observed in these patients and improve the antioxidant capacity of patients. Notably, norleucine may be a new treatment approach that can be used to prevent encephalopathy in this disease, but human studies are needed to prove these effects. In this review, we aimed to examine the medical nutrition therapy for maple syrup-related urine disease and
nutritional supplements that may have significant effects on this disease.
Keywords: Maple syrup urine disease, dietary supplements, L-carnitine, norleucine, medical nutrition therapy.

References

  • 1. Edelmann L, Wasserstein MP, Kornreich R, Sansaricq C, Snyderman SE, Diaz GA. Maple syrup urine disease: identification and carrier-frequency determination of a novel founder mutation in the Ashkenazi Jewish population. Am J Hum Genet. 2001; 69(4): 863–8. DOI: https://doi.org/10.1086/323677
  • 2. Blackburn PR, Gass JM, Vairo FPE, Farnham KM, Atwal HK, Macklin S, et al. Maple syrup urine disease: mechanisms and management. Appl Clin Genet. 2017; 10: 57–66. DOI: https://doi.org/10.2147/TACG.S125962
  • 3. Chuang DT, Shih VE, Max Wynn RR. Maple syrup urine disease (branched-chain ketoaciduria). In: Valle DL, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA, editors. The online metabolic and molecular bases of ınherited disease [Internet]. McGraw-Hill Education; 2019 [cited 2025 Apr 22]. Available from: https://ommbid.mhmedical.com/content.aspx?bookid=2709§ionid=225084607
  • 4. Younes S, Elkahlout R, Kilani H, Okashah S, Sharshani HA, Rezoug Z, et al. Spectrum of genetic variants associated with maple syrup urine disease in the Middle East, North Africa, and Türkiye (MENAT): a systematic review, BMC Med Genomics. 2025;18(1): 49. DOI: https://doi.org/10.1186/s12920-025-02083-x
  • 5. Kozanoğlu T, Gökçay GF. Akçaağaç şurubu idrar hastalığında beslenme tedavisinin durumu üzerine bir anlatı incelemesi. Bes Diy Derg. 2023;51(3):69-78. DOI: https://doi.org/10.33076/2023.BDD.1789
  • 6. Hadj-Taieb S, Nasrallah F, Hammami MB, Elasmi M, Sanhaji H, Moncef F, et al. Aminoacidopathies and organic acidurias in Tunisia: a retrospective survey over 23 years. Tunis Med. 2012;90(3):258-261.
  • 7. Imtiaz F, Al-Mostafa A, Allam R, Ramzan K, Al-Tassan N, Tahir AI, et al. Twenty novel mutations in BCKDHA, BCKDHB and DBT genes in a cohort of 52 Saudi Arabian patients with maple syrup urine disease. Mol Genet Metab Rep. 2017;11:17–23. DOI: https://doi.org/10.1016/j.ymgmr.2017.03.006
  • 8. Gorjizadeh N, Jazayeri O, Najavand S, Alijanpour M. The genes responsible for maple syrup urine disease, molecular pathomechanisms and causative mutations in Iranian population. J Babol Univ Med Sci. 2018;20(12):39-48.
  • 9. Dursun A, Henneke M, Ozgül K, Gartner J, Coşkun T, Tokatli A, et al. Maple syrup urine disease: mutation analysis in Turkish patients. J Inherit Metab Dis. 2002;25(2):89-97. DOI: https://doi.org/10.1023/a:1015668425004
  • 10. Boyer SW, Barclay LJ, Burrage LC. Inherited Metabolic Disorders: Aspects of Chronic Nutrition Management. Nutr Clin Pract. 2015; 30(4): 502–10. DOI: https://doi.org/10.1177/0884533615586201
  • 11. Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014; 23(R1): R1–8. DOI: https://doi.org/10.1093/hmg/ddu123
  • 12. Maden E, Uçak S, Yılmazer Y. Akçaağaç Şurubu Hastalığının Beslenme Tedavisinde Güncel Yaklaşımlar. Avrupa Bilim ve Teknoloji Dergisi. 2021; (25): 145-51.
  • 13. Hassan SA, Gupta V. Maple Syrup Urine Disease. [Updated 2024 Mar 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557773/
  • 14. Blomstrand E, Eliasson J, Karlsson HK, Köhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006; 136(1), 269S–73S. DOI: https://doi.org/10.1093/jn/136.1.269S
  • 15. Chou PY, Fasman GD. Structural and functional role of leucine residues in proteins. J Mol Biol. 1973; 74(3): 263–81. DOI: https://doi.org/10.1016/0022-2836(73)90372-0
  • 16. Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984; 4: 409–54. DOI: https://doi.org/10.1146/annurev.nu.04.070184.002205
  • 17. Sperringer JE, Addington A, Hutson SM. Branched-Chain Amino Acids and Brain Metabolism. Neurochem Res. 2017;42(6):1697–1709. DOI: https://doi.org/10.1007/s11064-017-2261-5
  • 18. Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006; 136(1): 207S–11S. DOI: https://doi.org/10.1093/jn/136.1.207S
  • 19. Crown SB, Marze N, Antoniewicz MR. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes. PloS one. 2015; 10(12): e0145850. DOI: https://doi.org/10.1371/journal.pone.0145850
  • 20. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014; 10(12): 723–36. DOI: https://doi.org/10.1038/nrendo.2014.171
  • 21. Scaini G, Tonon T, de Souza CFM, Schuk PF, Ferreira GC, Neto JS, et al. Serum markers of neurodegeneration in maple syrup urine disease. Mol Neurobiol. 2017;54(7):5709-5719. DOI: https://doi.org/10.1007/s12035-016-0116-8
  • 22. Strauss KA, Carson VJ, Soltys K, Young ME, Bowser LE, Puffenberger EG, et al. Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes. Mol Genet Metab. 2020; 129(3): 193–206. DOI: https://doi.org/10.1016/j.ymgme.2020.01.006
  • 23. Homanics GE, Skvorak K, Ferguson C, Watkins S, Paul HS. Production and characterization of murine models of classic and intermediate maple syrup urine disease. BMC Med Genet. 2006; 7: 33. DOI: https://doi.org/10.1186/1471-2350-7-33
  • 24. Muslu M, Kök C. Akçaağaç Şurubu İdrar Hastalığı ve Tıbbi Beslenme Tedavisi. CUSBED. 2021; 1(6): 41-48.
  • 25. Scriver CR, Mackenzie S, Clow CL, Delvin E. Thiamine-responsive maple-syrup-urine disease. Lancet. 1971;1(7694):310-2. DOI:https://doi.org/10.1016/s0140-6736(71)91041-5
  • 26. Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2002;30(1):52-5.
  • 27. Harris-Haman P, Brown L, Massey S, Ramamoorthy S. Implications of Maple Syrup Urine Disease in Newborns. Nurs Womens Health. 2017; 21(3): 196–206. DOI: https://doi.org/10.1016/j.nwh.2017.04.009
  • 28. Puckett RL, Lorey F, Rinaldo P, Lipson MH, Matern D, Sowa ME, et al. Maple syrup urine disease: further evidence that newborn screening may fail to identify variant forms. Mol Genet Metab. 2010; 100(2): 136–42. DOI: https://doi.org/10.1016/j.ymgme.2009.11.010
  • 29. Chen T, Lu D, Xu F, Ji W, Zhan X, Gao X, et al. Newborn screening of maple syrup urine disease and the effect of early diagnosis. Clin Chim Act. 2023; 548: 117483. DOI: https://doi.org/10.1016/j.cca.2023.117483
  • 30. Frazier DM, Allgeier C, Homer C, Marriage BJ, Ogata B, Rohr F, et al. Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach. Mol Genet Metab. 2014; 112(3): 210–7. DOI: https://doi.org/10.1016/j.ymgme.2014.05.006
  • 31. Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR. Neurological damage in MSUD: the role of oxidative stress. Cell Mol Neurobiol. 2014; 34(2): 157–65. DOI: https://doi.org/10.1007/s10571-013-0002-0
  • 32. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Luhovyy B, et al. Brain amino acid requirements and toxicity: the example of leucine. J Nutr. 2005; 135(6): 1531S–8S. DOI: https://doi.org/10.1093/jn/135.6.1531S
  • 33. Zinnanti WJ, Lazovic J. Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. J Inherit Metab Dis. 2012; 35(1): 71–9. DOI: https://doi.org/10.1007/s10545-011-9333-5
  • 34. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002; 109(6): 999–1008. DOI: https://doi.org/10.1542/peds.109.6.999
  • 35. Scott AI, Cusmano-Ozog K, Enns GM, Cowan TM. Correction of hyperleucinemia in MSUD patients on leucine-free dietary therapy. Mol Genet Metab. 2017; 122(4): 156–9. DOI: https://doi.org/10.1016/j.ymgme.2017.09.012
  • 36. Atwal P, Macmurdo C, Grimm P. Haemodialysis is an effective treatment in acute metabolic decompensation of maple syrup urine disease. Mol Genet Metab Rep. 2015; 4: 46-8. DOI: https://doi.org/10.1016/j.ymgmr.2015.07.001
  • 37. Altınok, Y. Doğuştan Amino Asit Metabolizması Bozukluğu Hastalıklarında Tıbbi Beslenme Tedavisi. İçinde Vakalarla Öğreniyorum: Çocuk Hastalıklarında Tıbbi Beslenme Tedavisi-3. Hedef CS Basın Yayın, Ankara; 2019. s. 27-30.
  • 38. Strauss KA, Morton DH. Branched-chain ketoacyl dehydrogenase deficiency: maple syrup disease. Curr Treat Options Neurol. 2003;5(4):329-341. DOI: https://doi.org/10.1007/s11940-003-0039-3
  • 39. Genetic Metabolic Dietetians International. MSUD nutrition management guidelines. [Internet]. [update 2014 May; cited 2025 Apr 25]. Available from: https://managementguidelines.net/guidelines.php/59/MSUD%20Nutrition%20Guidelines/Version%201.46.
  • 40. Nurani N, Limavady A. A case of concurrent malnutrition in maple syrup urine disease: challenges and solutions in Indonesia. Discov Med. 2024;1,34. DOI: https://doi.org/10.1007/s44337-024-00041-7
  • 41. Ziadlou M, MacDonald A. Alternative sources of valine and isoleucine for prompt reduction of plasma leucine in maple syrup urine disease patients: A case series. JIMD Rep. 2022;63(6):555-562. DOI: https://doi.org/10.1002/jmd2.12327
  • 42. Alkhayal FA, Al Haddad S, Bakraa RM, Alqahtani A. Acrodermatitis dysmetabolica secondary to isoleucine deficiency in infant with maple syrup urine disease. Dermatol Reports. 2023;15(4):9750. DOI: https://doi.org/10.4081/dr.2023.9750
  • 43. Kumru B, Oztürk Hismi B. Investigation of L - Carnitine Concentrations in Treated Patients with Maple Syrup Urine Disease. J Pediatr Genet. 2019; 8(3): 133–6. DOI: https://doi.org/10.1055/s-0039-1691789
  • 44. Guerreiro G, Mescka CP, Sitta A, Donida B, Marchetti D, Hammerschmidt T, et al. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the L-carnitine role. Int J Dev Neurosci. 2015; 42: 10–4. DOI: https://doi.org/10.1016/j.ijdevneu.2015.02.003
  • 45. Mescka CP, Guerreiro G, Donida B, Marchetti D, Wayhs CA, Ribas GS, et al. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. 2015;30(5):1167-74. DOI: https://doi.org/10.1007/s11011-015-9686-9
  • 46. Mescka CP, Guerreiro G, Hammerschmidt T, Faverzani J, de Moura Coelho D, Mandredini V, et al. L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res. 2015;775:43-7. DOI: https://doi.org/10.1016/j.mrfmmm.2015.03.008
  • 47. Dahpy MA, Saleem TH, El-Asheer OM, ELrasoul AA, Abo Elgeit AM. Clinical, Biochemical, Molecular, and Therapeutic Analysis of Maple Syrup Urine Disease in Upper Egypt. J Pediatr Genet. 2021;10(2):116-125. DOI: https://doi.org/10.1055/s-0040-1715111
  • 48. Mescka CP, Wayhs CA, Vanzin CS, Biancini GB, Guerreiro G., Manfredini V, et al. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci. 2013; 31(1): 21–4. DOI: https://doi.org/10.1016/j.ijdevneu.2012.10.109
  • 49. Hauschild TC, Guerreiro G, Mescka CP, Coelho DM, Steffens L, Moura DJ, et al. DNA damage induced by alloisoleucine and other metabolites in maple syrup urine disease and protective effect of l-carnitine. Toxicol In Vitro. 2019;57:194-202. DOI: https://doi.org/10.1016/j.tiv.2019.03.007
  • 50. Zinnanti WJ, Lazovic J, Griffin K, Skvorak KJ, Paul HS, Homanics GE, et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain. 2009; 132(4): 903–18. DOI: https://doi.org/10.1093/brain/awp024

Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi ve Besin Destekleri

Year 2025, Volume: 10 Issue: 3, 516 - 523, 30.09.2025
https://doi.org/10.61399/ikcusbfd.1581400

Abstract

Akçaağaç şurubu idrar hastalığı, dallı zincirli α-ketoasit dehidrogenaz enzim kompleksindeki hasarlar sebebiyle dallı zincirli amino asitlerin metabolize olamadığı otozomal resesif geçişli nadiren görülen doğuştan kalıtsal metabolizma hastalığıdır. Dallı zincirli amino asitlerin metabolize olamaması sonucunda plazmada dallı zincirli amino asitlerin ve idrarda ilgili dallı zincirli ketoasitlerin birikimi gerçekleşmektedir. Hastalığın beş alt klinik fenotipi bulunmakta olup tıbbi beslenme tedavisi ve karaciğer nakli mevcut tedavi yöntemleri arasındadır. Tıbbi beslenme tedavisi akut ve uzun dönem olmak üzere iki aşamalıdır. Akut metabolik kriz ataklarında katabolizmanın azaltılması acil beslenme girişimini gerektirmektedir. Akut metabolik krizlerin düzenlenmesinin ardından daha nörotoksik olan lösinin temel alınarak dallı zincirli amino asit miktarının kısıtlandığı uzun süreli beslenme tedavisine geçilmektedir. Tıbbi beslenme tedavisinde besin desteği yaklaşımları olarak, hastaların diyet yoluyla aldıkları dallı zincirli amino asitleri tolere etme kapasitelerinde artışa veya plazmalarındaki dallı zincirli amino asit seviyelerindeki düşüşe destek olan tiamin takviyesinin ve büyüme ve gelişme için hayati önem taşıyan, plazma lösin düzeylerinin düşmesini hızlandırdığı ve çeşitli cilt lezyonlarını önlediği bildirilen izolösin ile valin takviyelerinin yanı sıra L-karnitin ve norlösin takviyelerinin de hastalar üzerinde olumlu etkilerinin olabileceği bildirilmektedir. L-karnitin takviyesinin, bu hastalarda görülen protein ve lipidlerin oksidatif hasarlarının önlenmesi ve hastaların antioksidan kapasitelerinin iyileşmesine katkı sağlayabileceğinin yanında DNA hasarında koruyucu etkilere sahip olabileceği sonucuna varan çalışmalar mevcuttur. Norlösinin ise bu hastalıkta ensefalopatiyi önlemek amacıyla kullanılabilecek yeni bir tedavi yaklaşımı olabileceği ancak bu etkilerin kanıtlanabilmesi için insan çalışmalarının yapılması gerektiği vurgulanmaktadır. Bu derlemede, akçaağaç şurubu idrar hastalığının tıbbi beslenme tedavisinin ve hastalık üzerinde önemli etkiler gösterebilecek olan besin desteklerinin incelenmesi amaçlanmıştır.
Anahtar Kelimeler: Akçaağaç şurubu idrar hastalığı, besin takviyeleri, L-karnitin, norlösin, tıbbi beslenme tedavisi.

References

  • 1. Edelmann L, Wasserstein MP, Kornreich R, Sansaricq C, Snyderman SE, Diaz GA. Maple syrup urine disease: identification and carrier-frequency determination of a novel founder mutation in the Ashkenazi Jewish population. Am J Hum Genet. 2001; 69(4): 863–8. DOI: https://doi.org/10.1086/323677
  • 2. Blackburn PR, Gass JM, Vairo FPE, Farnham KM, Atwal HK, Macklin S, et al. Maple syrup urine disease: mechanisms and management. Appl Clin Genet. 2017; 10: 57–66. DOI: https://doi.org/10.2147/TACG.S125962
  • 3. Chuang DT, Shih VE, Max Wynn RR. Maple syrup urine disease (branched-chain ketoaciduria). In: Valle DL, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA, editors. The online metabolic and molecular bases of ınherited disease [Internet]. McGraw-Hill Education; 2019 [cited 2025 Apr 22]. Available from: https://ommbid.mhmedical.com/content.aspx?bookid=2709§ionid=225084607
  • 4. Younes S, Elkahlout R, Kilani H, Okashah S, Sharshani HA, Rezoug Z, et al. Spectrum of genetic variants associated with maple syrup urine disease in the Middle East, North Africa, and Türkiye (MENAT): a systematic review, BMC Med Genomics. 2025;18(1): 49. DOI: https://doi.org/10.1186/s12920-025-02083-x
  • 5. Kozanoğlu T, Gökçay GF. Akçaağaç şurubu idrar hastalığında beslenme tedavisinin durumu üzerine bir anlatı incelemesi. Bes Diy Derg. 2023;51(3):69-78. DOI: https://doi.org/10.33076/2023.BDD.1789
  • 6. Hadj-Taieb S, Nasrallah F, Hammami MB, Elasmi M, Sanhaji H, Moncef F, et al. Aminoacidopathies and organic acidurias in Tunisia: a retrospective survey over 23 years. Tunis Med. 2012;90(3):258-261.
  • 7. Imtiaz F, Al-Mostafa A, Allam R, Ramzan K, Al-Tassan N, Tahir AI, et al. Twenty novel mutations in BCKDHA, BCKDHB and DBT genes in a cohort of 52 Saudi Arabian patients with maple syrup urine disease. Mol Genet Metab Rep. 2017;11:17–23. DOI: https://doi.org/10.1016/j.ymgmr.2017.03.006
  • 8. Gorjizadeh N, Jazayeri O, Najavand S, Alijanpour M. The genes responsible for maple syrup urine disease, molecular pathomechanisms and causative mutations in Iranian population. J Babol Univ Med Sci. 2018;20(12):39-48.
  • 9. Dursun A, Henneke M, Ozgül K, Gartner J, Coşkun T, Tokatli A, et al. Maple syrup urine disease: mutation analysis in Turkish patients. J Inherit Metab Dis. 2002;25(2):89-97. DOI: https://doi.org/10.1023/a:1015668425004
  • 10. Boyer SW, Barclay LJ, Burrage LC. Inherited Metabolic Disorders: Aspects of Chronic Nutrition Management. Nutr Clin Pract. 2015; 30(4): 502–10. DOI: https://doi.org/10.1177/0884533615586201
  • 11. Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014; 23(R1): R1–8. DOI: https://doi.org/10.1093/hmg/ddu123
  • 12. Maden E, Uçak S, Yılmazer Y. Akçaağaç Şurubu Hastalığının Beslenme Tedavisinde Güncel Yaklaşımlar. Avrupa Bilim ve Teknoloji Dergisi. 2021; (25): 145-51.
  • 13. Hassan SA, Gupta V. Maple Syrup Urine Disease. [Updated 2024 Mar 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557773/
  • 14. Blomstrand E, Eliasson J, Karlsson HK, Köhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006; 136(1), 269S–73S. DOI: https://doi.org/10.1093/jn/136.1.269S
  • 15. Chou PY, Fasman GD. Structural and functional role of leucine residues in proteins. J Mol Biol. 1973; 74(3): 263–81. DOI: https://doi.org/10.1016/0022-2836(73)90372-0
  • 16. Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984; 4: 409–54. DOI: https://doi.org/10.1146/annurev.nu.04.070184.002205
  • 17. Sperringer JE, Addington A, Hutson SM. Branched-Chain Amino Acids and Brain Metabolism. Neurochem Res. 2017;42(6):1697–1709. DOI: https://doi.org/10.1007/s11064-017-2261-5
  • 18. Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006; 136(1): 207S–11S. DOI: https://doi.org/10.1093/jn/136.1.207S
  • 19. Crown SB, Marze N, Antoniewicz MR. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes. PloS one. 2015; 10(12): e0145850. DOI: https://doi.org/10.1371/journal.pone.0145850
  • 20. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014; 10(12): 723–36. DOI: https://doi.org/10.1038/nrendo.2014.171
  • 21. Scaini G, Tonon T, de Souza CFM, Schuk PF, Ferreira GC, Neto JS, et al. Serum markers of neurodegeneration in maple syrup urine disease. Mol Neurobiol. 2017;54(7):5709-5719. DOI: https://doi.org/10.1007/s12035-016-0116-8
  • 22. Strauss KA, Carson VJ, Soltys K, Young ME, Bowser LE, Puffenberger EG, et al. Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes. Mol Genet Metab. 2020; 129(3): 193–206. DOI: https://doi.org/10.1016/j.ymgme.2020.01.006
  • 23. Homanics GE, Skvorak K, Ferguson C, Watkins S, Paul HS. Production and characterization of murine models of classic and intermediate maple syrup urine disease. BMC Med Genet. 2006; 7: 33. DOI: https://doi.org/10.1186/1471-2350-7-33
  • 24. Muslu M, Kök C. Akçaağaç Şurubu İdrar Hastalığı ve Tıbbi Beslenme Tedavisi. CUSBED. 2021; 1(6): 41-48.
  • 25. Scriver CR, Mackenzie S, Clow CL, Delvin E. Thiamine-responsive maple-syrup-urine disease. Lancet. 1971;1(7694):310-2. DOI:https://doi.org/10.1016/s0140-6736(71)91041-5
  • 26. Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2002;30(1):52-5.
  • 27. Harris-Haman P, Brown L, Massey S, Ramamoorthy S. Implications of Maple Syrup Urine Disease in Newborns. Nurs Womens Health. 2017; 21(3): 196–206. DOI: https://doi.org/10.1016/j.nwh.2017.04.009
  • 28. Puckett RL, Lorey F, Rinaldo P, Lipson MH, Matern D, Sowa ME, et al. Maple syrup urine disease: further evidence that newborn screening may fail to identify variant forms. Mol Genet Metab. 2010; 100(2): 136–42. DOI: https://doi.org/10.1016/j.ymgme.2009.11.010
  • 29. Chen T, Lu D, Xu F, Ji W, Zhan X, Gao X, et al. Newborn screening of maple syrup urine disease and the effect of early diagnosis. Clin Chim Act. 2023; 548: 117483. DOI: https://doi.org/10.1016/j.cca.2023.117483
  • 30. Frazier DM, Allgeier C, Homer C, Marriage BJ, Ogata B, Rohr F, et al. Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach. Mol Genet Metab. 2014; 112(3): 210–7. DOI: https://doi.org/10.1016/j.ymgme.2014.05.006
  • 31. Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR. Neurological damage in MSUD: the role of oxidative stress. Cell Mol Neurobiol. 2014; 34(2): 157–65. DOI: https://doi.org/10.1007/s10571-013-0002-0
  • 32. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Luhovyy B, et al. Brain amino acid requirements and toxicity: the example of leucine. J Nutr. 2005; 135(6): 1531S–8S. DOI: https://doi.org/10.1093/jn/135.6.1531S
  • 33. Zinnanti WJ, Lazovic J. Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. J Inherit Metab Dis. 2012; 35(1): 71–9. DOI: https://doi.org/10.1007/s10545-011-9333-5
  • 34. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002; 109(6): 999–1008. DOI: https://doi.org/10.1542/peds.109.6.999
  • 35. Scott AI, Cusmano-Ozog K, Enns GM, Cowan TM. Correction of hyperleucinemia in MSUD patients on leucine-free dietary therapy. Mol Genet Metab. 2017; 122(4): 156–9. DOI: https://doi.org/10.1016/j.ymgme.2017.09.012
  • 36. Atwal P, Macmurdo C, Grimm P. Haemodialysis is an effective treatment in acute metabolic decompensation of maple syrup urine disease. Mol Genet Metab Rep. 2015; 4: 46-8. DOI: https://doi.org/10.1016/j.ymgmr.2015.07.001
  • 37. Altınok, Y. Doğuştan Amino Asit Metabolizması Bozukluğu Hastalıklarında Tıbbi Beslenme Tedavisi. İçinde Vakalarla Öğreniyorum: Çocuk Hastalıklarında Tıbbi Beslenme Tedavisi-3. Hedef CS Basın Yayın, Ankara; 2019. s. 27-30.
  • 38. Strauss KA, Morton DH. Branched-chain ketoacyl dehydrogenase deficiency: maple syrup disease. Curr Treat Options Neurol. 2003;5(4):329-341. DOI: https://doi.org/10.1007/s11940-003-0039-3
  • 39. Genetic Metabolic Dietetians International. MSUD nutrition management guidelines. [Internet]. [update 2014 May; cited 2025 Apr 25]. Available from: https://managementguidelines.net/guidelines.php/59/MSUD%20Nutrition%20Guidelines/Version%201.46.
  • 40. Nurani N, Limavady A. A case of concurrent malnutrition in maple syrup urine disease: challenges and solutions in Indonesia. Discov Med. 2024;1,34. DOI: https://doi.org/10.1007/s44337-024-00041-7
  • 41. Ziadlou M, MacDonald A. Alternative sources of valine and isoleucine for prompt reduction of plasma leucine in maple syrup urine disease patients: A case series. JIMD Rep. 2022;63(6):555-562. DOI: https://doi.org/10.1002/jmd2.12327
  • 42. Alkhayal FA, Al Haddad S, Bakraa RM, Alqahtani A. Acrodermatitis dysmetabolica secondary to isoleucine deficiency in infant with maple syrup urine disease. Dermatol Reports. 2023;15(4):9750. DOI: https://doi.org/10.4081/dr.2023.9750
  • 43. Kumru B, Oztürk Hismi B. Investigation of L - Carnitine Concentrations in Treated Patients with Maple Syrup Urine Disease. J Pediatr Genet. 2019; 8(3): 133–6. DOI: https://doi.org/10.1055/s-0039-1691789
  • 44. Guerreiro G, Mescka CP, Sitta A, Donida B, Marchetti D, Hammerschmidt T, et al. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the L-carnitine role. Int J Dev Neurosci. 2015; 42: 10–4. DOI: https://doi.org/10.1016/j.ijdevneu.2015.02.003
  • 45. Mescka CP, Guerreiro G, Donida B, Marchetti D, Wayhs CA, Ribas GS, et al. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. 2015;30(5):1167-74. DOI: https://doi.org/10.1007/s11011-015-9686-9
  • 46. Mescka CP, Guerreiro G, Hammerschmidt T, Faverzani J, de Moura Coelho D, Mandredini V, et al. L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res. 2015;775:43-7. DOI: https://doi.org/10.1016/j.mrfmmm.2015.03.008
  • 47. Dahpy MA, Saleem TH, El-Asheer OM, ELrasoul AA, Abo Elgeit AM. Clinical, Biochemical, Molecular, and Therapeutic Analysis of Maple Syrup Urine Disease in Upper Egypt. J Pediatr Genet. 2021;10(2):116-125. DOI: https://doi.org/10.1055/s-0040-1715111
  • 48. Mescka CP, Wayhs CA, Vanzin CS, Biancini GB, Guerreiro G., Manfredini V, et al. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci. 2013; 31(1): 21–4. DOI: https://doi.org/10.1016/j.ijdevneu.2012.10.109
  • 49. Hauschild TC, Guerreiro G, Mescka CP, Coelho DM, Steffens L, Moura DJ, et al. DNA damage induced by alloisoleucine and other metabolites in maple syrup urine disease and protective effect of l-carnitine. Toxicol In Vitro. 2019;57:194-202. DOI: https://doi.org/10.1016/j.tiv.2019.03.007
  • 50. Zinnanti WJ, Lazovic J, Griffin K, Skvorak KJ, Paul HS, Homanics GE, et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain. 2009; 132(4): 903–18. DOI: https://doi.org/10.1093/brain/awp024
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Nutritional Science
Journal Section Review
Authors

Evla Demircioğlu 0009-0005-3563-5369

Indrani Kalkan 0000-0001-6020-349X

Publication Date September 30, 2025
Submission Date November 26, 2024
Acceptance Date July 29, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Demircioğlu, E., & Kalkan, I. (2025). Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi ve Besin Destekleri. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 10(3), 516-523. https://doi.org/10.61399/ikcusbfd.1581400
AMA Demircioğlu E, Kalkan I. Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi ve Besin Destekleri. İKÇÜSBFD. September 2025;10(3):516-523. doi:10.61399/ikcusbfd.1581400
Chicago Demircioğlu, Evla, and Indrani Kalkan. “Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi Ve Besin Destekleri”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 10, no. 3 (September 2025): 516-23. https://doi.org/10.61399/ikcusbfd.1581400.
EndNote Demircioğlu E, Kalkan I (September 1, 2025) Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi ve Besin Destekleri. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 10 3 516–523.
IEEE E. Demircioğlu and I. Kalkan, “Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi ve Besin Destekleri”, İKÇÜSBFD, vol. 10, no. 3, pp. 516–523, 2025, doi: 10.61399/ikcusbfd.1581400.
ISNAD Demircioğlu, Evla - Kalkan, Indrani. “Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi Ve Besin Destekleri”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 10/3 (September2025), 516-523. https://doi.org/10.61399/ikcusbfd.1581400.
JAMA Demircioğlu E, Kalkan I. Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi ve Besin Destekleri. İKÇÜSBFD. 2025;10:516–523.
MLA Demircioğlu, Evla and Indrani Kalkan. “Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi Ve Besin Destekleri”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, vol. 10, no. 3, 2025, pp. 516-23, doi:10.61399/ikcusbfd.1581400.
Vancouver Demircioğlu E, Kalkan I. Akçaağaç Şurubu İdrar Hastalığında Tıbbi Beslenme Tedavisi ve Besin Destekleri. İKÇÜSBFD. 2025;10(3):516-23.



Licensed under a Creative Commons Attribution 4.0 International License.