Derleme
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 23 Sayı: 2, 145 - 160, 30.11.2022

Öz

Kaynakça

  • Adelodun, B., Kim, S. H., Odey, G., & Choi, K. S. (2021). Assessment of environmental and economic aspects of household food waste using a new Environmental-Economic Footprint (EN-EC) index: A case study of Daegu, South Korea. Science of the Total Environment, 776, 145928. https://doi.org/10.1016/j.scitotenv.2021.145928
  • Alfio, V. G., Manzo, C., & Micillo, R. (2021). From Fish Waste to Value: An Overview of the Sustainable Recovery of Omega-3 for Food Supplements. Molecules https://doi.org/10.3390/molecules26041002
  • Alvi, T., Asif, Z., & Khan, M. K. I. (2022). Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review. Food Bioscience, 101580. https://doi.org/10.1016/j.fbio.2022.101580
  • Alzuwaid, N. T., Sissons, M., Laddomada, B., & Fellows, C. M. (2020). Nutritional and functional properties of durum wheat bran protein concentrate. Cereal Chemistry, 97(2), 304-315. https://doi.org/10.1002/cche.10246
  • Atık Yönetimi Yönetmeliği, (2015). Atık Yönetimi Yönetmeliği. T.C. Resmî Gazete (29314, 2 Nisan 2015).
  • Awasthi, M. K., Tarafdar, A., Gaur, V. K., Amulya, K., Narisetty, V., Yadav, D. K., Sindhu, R., Binod, P., Negi, T., Pandey, A., Zhang, Z., & Sirohi, R. (2022). Emerging trends of microbial technology for the production of oligosaccharides from biowaste and their potential application as prebiotic. International Journal of Food Microbiology, 109610. https://doi.org/10.1016/j.ijfoodmicro.2022.109610
  • Balasubramaniam, V. M. (2021). Process development of high pressure-based technologies for food: research advances and future perspectives. Current Opinion in Food Science, 42, 270-277. https://doi.org/10.1016/j.cofs.2021.10.001
  • Banerjee, S., Patti, A. F., Ranganathan, V., & Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing, 117, 38-50. https://doi.org/10.1016/j.fbp.2019.06.012
  • Bassani, A., Carullo, D., Rossi, F., Fiorentini, C., Garrido, G. D., Reklaitis, G. V., Bonadies, I., & Spigno, G. (2022). Modeling of a spray-drying process for the encapsulation of high-added value extracts from food by-products. Computers & Chemical Engineering, 161, 107772. https://doi.org/10.1016/j.compchemeng.2022.107772
  • Bellemare, M. F., Çakir, M., Peterson, H. H., Novak, L., & Rudi, J. (2017). On the Measurement of Food Waste. American Journal of Agricultural Economics, 99(5), 1148–1158. https://doi.org/10.1093/ajae/aax034
  • Benassi, L., Alessandri, I., & Vassalini, I. (2021). Assessing Green Methods for Pectin Extraction from Waste Orange Peels. Molecules, 26(6), 1766. https://doi.org/10.3390/molecules26061766
  • Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 105, 385-401. https://doi.org/10.1016/j.tifs.2020.09.015
  • Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(6), 615–626. https://doi.org/https://doi.org/10.1016/j.tibtech.2017.11.001
  • Bureau Veritas. (2020). 4 Ways to Make Food Processing More Sustainable. Retrieved April 14, 2022, from https://certification.bureauveritas.com/magazine/4-ways-make-food-processing-more-sustainable
  • Calvo, T. R. A., Santagapita, P. R., & Perullini, M. (2019). Functional and structural effects of hydrocolloids on Ca (II)-alginate beads containing bioactive compounds extracted from beetroot. LWT, 111, 520-526. https://doi.org/10.1016/j.lwt.2019.05.047
  • Camaréna, S. (2020). Artificial intelligence in the design of the transitions to sustainable food systems. Journal of Cleaner Production, 271, 122574. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122574
  • Cano, M. E., García-Martin, A., Comendador Morales, P., Wojtusik, M., Santos, V. E., Kovensky, J., & Ladero, M. (2020). Production of oligosaccharides from agrofood wastes. Fermentation, 6(1), 31. https://doi.org/10.3390/fermentation6010031
  • Carmona-Cabello, M., Garcia, I. L., Leiva-Candia, D., & Dorado, M. P. (2018). Valorization of food waste based on its composition through the concept of biorefinery. Current Opinion in Green and Sustainable Chemistry, 14, 67–79. https://doi.org/https://doi.org/10.1016/j.cogsc.2018.06.011
  • Carrillo, C., Nieto, G., Martínez-Zamora, L., Ros, G., Kamiloglu, S., Munekata, P. E., Pateiro, M., Lorenzo, J. M., Fernández-López, J., Viuda-Martos, M., Pérez-Álvarez, J. Á. & Barba, F. J. (2022). Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.1c07208
  • Chalak, A., Abou-Daher, C., Chaaban, J., & Abiad, M. G. (2016). The global economic and regulatory determinants of household food waste generation: A cross-country analysis. Waste Management, 48(2016), 418–422. https://doi.org/10.1016/j.wasman.2015.11.040
  • Coelho, C. C., Michelin, M., Cerqueira, M. A., Gonçalves, C., Tonon, R. V., Pastrana, L. M., Freitas-Silva, O., Vicente, A. A., Cabral, L. M. C., & Teixeira, J. A. (2018). Cellulose nanocrystals from grape pomace: production, properties and cytotoxicity assessment. Carbohydrate Polymers, 192, 327-336. https://doi.org/10.1016/j.carbpol.2018.03.023
  • Craig, H., Lipinski, B., Robertson, K., Dias, D., Gavilan, I., & Gréverath, P. (2016). Food Loss and Waste Accounting and Reporting Standard. Executive summary. FLW Protocol, 160. https://www.wbcsd.org/Programs/Food-and-Nature/Food-Land-Use/Climate-Smart-Agriculture/Resources/Food-Loss-and-Waste-Accounting-and-Reporting-Standard
  • Çerçİoğlu, M. (2019). Sürdürülebilir Atık Yönetiminde Sera Atıklarının Kompost Olarak Değerlendirilmesi. 33(1), 167–177.
  • Çirişoğlu, E., & Akoğlu, A. (2021). Restoranlarda Oluşan Gıda Atıkları ve Yönetimi: İstanbul İli Örneği. Akademik Gıda, 19(1), 38–48. https://doi.org/10.24323/akademik-gida.927664
  • Dahlén, L., & Lagerkvist, A. (2010). Pay as you throw. Strengths and weaknesses of weight-based billing in household waste collection systems in Sweden. Waste Management, 30(1), 23–31. https://doi.org/10.1016/j.wasman.2009.09.022
  • Daido, M. (1987). A recovery and reuse system for fatty oils from by-products and waste materials of vegetable fatty oil production. Conservation & Recycling, 10(4), 273–278. https://doi.org/https://doi.org/10.1016/0361-3658(87)90058-0
  • De Bernardi, P., & Azucar, D. (2020). Innovative and Sustainable Food Business Models BT - Innovation in Food Ecosystems: Entrepreneurship for a Sustainable Future. In P. De Bernardi & D. Azucar (Eds.) (pp. 189–221). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-33502-1_7
  • De Brier, N., Gomand, S. V., Celus, I., Courtin, C. M., Brijs, K., & Delcour, J. A. (2015). Extractability and chromatographic characterization of wheat (Triticum aestivum L.) bran protein. Journal of food science, 80(5), C967-C974. https://doi.org/10.1111/1750-3841.12856
  • Demirbaş, N. (2018). Dünyada ve Türkiye’de gıda israfını önleme çalışmalarının değerlendirilmesi. VIII. IBANESS Kongreler Serisi, Plovdiv, Bulgaristan, 21(22), 521-526.
  • Dini, I. (2021). Bio Discarded from Waste to Resource. Foods, 10(11), 2652. https://doi.org/10.3390/foods10112652
  • Doria, E., Buonocore, D., Marra, A., Bontà, V., Gazzola, A., Dossena, M., Verri M. & Calvio, C. (2022). Bacterial-Assisted Extraction of Bioactive Compounds from Cauliflower. Plants, 11(6), 816. https://doi.org/10.3390/plants11060816
  • Ebrahimi, P., & Lante, A. (2022). Environmentally Friendly Techniques for the Recovery of Polyphenols from Food By-Products and Their Impact on Polyphenol Oxidase: A Critical Review. Applied Sciences, 12(4), 1923. https://doi.org/10.3390/app12041923
  • Eissa, M. A., Nasralla, N. N., Gomah, N. H., Osman, D. M., & El-Derwy, Y. M. (2018). Evaluation of natural fertilizer extracted from expired dairy products as a soil amendment. Journal of Soil Science and Plant Nutrition, 18(3), 694-704. http://dx.doi.org/10.4067/S0718-95162018005002002
  • El Bilali, H., & Hassen, T. Ben. (2020). Food waste in the countries of the gulf cooperation council: A systematic review. Foods, 9(4), 7–9. https://doi.org/10.3390/foods9040463
  • Eriksson, M., & Spångberg, J. (2017). Carbon footprint and energy use of food waste management options for fresh fruit and vegetables from supermarkets. Waste Management, 60, 786–799. https://doi.org/10.1016/j.wasman.2017.01.008
  • FAO (Food and Agriculture Organization), (2013). Food wastage footprint: ımpacts on natural resources. http://www.fao.org/docrep/018/i3347e/i3347e.pdf (Erişim Tarihi: 17.04.2022).
  • FAO, (2014). Building a Common Vision for Sustainable Food and Agriculture. American Journal of Evaluation, 4(4), 63–65.
  • FAO, (2018). 20 Interconnected Actions To Guide Decision-Makers. In Transforming Food and Agriculture To Achieve The SDGs (pp. 1–76).
  • FAO, (2022). Food Loss and Food Waste. http://www.fao.org/food-loss-and-food-waste/en. (Erişim Tarihi: 17.04.2022).
  • Faustino, M., Veiga, M., Sousa, P., Costa, E. M., Silva, S., & Pintado, M. (2019). Agro-food byproducts as a new source of natural food additives. Molecules, 24(6), 1056. https://doi.org/10.3390/molecules24061056
  • Frehner, A., De Boer, I. J. M., Muller, A., Van Zanten, H. H. E., & Schader, C. (2022). Consumer strategies towards a more sustainable food system: insights from Switzerland. The American Journal of Clinical Nutrition, 115(4), 1039–1047. https://doi.org/10.1093/ajcn/nqab401
  • FUSIONS. (2016). Estimates of European food waste levels. Brussels, Belgium: European Union.
  • Gautério, G. V., da Silva, L. G. G., Hübner, T., da Rosa Ribeiro, T., & Kalil, S. J. (2020). Maximization of xylanase production by Aureobasidium pullulans using a by-product of rice grain milling as xylan source. Biocatalysis and Agricultural Biotechnology, 23, 101511. https://doi.org/10.1016/j.bcab.2020.101511
  • Gavahian, M., Mathad, G. N., Pandiselvam, R., Lin, J., & Sun, D. W. (2021). Emerging technologies to obtain pectin from food processing by-products: A strategy for enhancing resource efficiency. Trends in Food Science & Technology, 115, 42-54. https://doi.org/10.1016/j.tifs.2021.06.018
  • Georganas, A., Giamouri, E., Pappas, A. C., Papadomichelakis, G., Galliou, F., Manios, T., Tsiplakou, E., Fegeros, K. & Zervas, G. (2020). Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods, 9(3), 291. https://doi.org/10.3390/foods9030291
  • Gheewala, S. H., Jungbluth, N., Notarnicola, B., Ridoutt, B., & van der Werf, H. (2020). No simple menu for sustainable food production and consumption. The International Journal of Life Cycle Assessment, 25(7), 1175–1182. https://doi.org/10.1007/s11367-020-01783-z
  • Ghosh, S., Gillis, A., Sheviryov, J., Levkov, K., & Golberg, A. (2019). Towards waste meat biorefinery: Extraction of proteins from waste chicken meat with non-thermal pulsed electric fields and mechanical pressing. Journal of Cleaner Production, 208, 220-231. https://doi.org/10.1016/j.jclepro.2018.10.037
  • Gigliobianco, M. R., Cortese, M., Nannini, S., Di Nicolantonio, L., Peregrina, D. V., Lupidi, G., Vitali, L. C., Boccietto, E., Di Martino, P. & Censi, R. (2022). Chemical, Antioxidant, and Antimicrobial Properties of the Peel and Male Flower By-Products of Four Varieties of Punica granatum L. Cultivated in the Marche Region for Their Use in Cosmetic Products. Antioxidants, 11(4), 768. https://doi.org/10.3390/antiox11040768
  • Gil-Ramirez, A., Salas-Veizaga, D. M., Grey, C., Karlsson, E. N., Rodriguez-Meizoso, I., & Linares-Pastén, J. A. (2018). Integrated process for sequential extraction of saponins, xylan and cellulose from quinoa stalks (Chenopodium quinoa Willd.). Industrial Crops and Products, 121, 54-65. https://doi.org/10.1016/j.indcrop.2018.04.074
  • Glasgo, B., Azevedo, I. L., & Hendrickson, C. (2016). How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings. Applied Energy, 180, 66–75. https://doi.org/10.1016/j.apenergy.2016.07.036
  • Görgüç, A., Özer, P., & Yılmaz, F. M. (2020). Microwave‐assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q‐TOF/MS. Journal of Food Processing and Preservation, 44(1), e14304. https://doi.org/10.1111/jfpp.14304
  • Gu, H., Gao, X., Zhang, H., Chen, K., & Peng, L. (2020). Fabrication and characterization of cellulose nanoparticles from maize stalk pith via ultrasonic-mediated cationic etherification. Ultrasonics Sonochemistry, 66, 104932. https://doi.org/10.1016/j.ultsonch.2019.104932
  • Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste (pp. 1–38). Rome: FAO.
  • Gustavsson, U., Eriksson, T., Nemati, H. M., Saad, P., Singerl, P., & Fager, C. (2012). An RF carrier bursting system using partial quantization noise cancellation. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(3), 515–528. https://doi.org/10.1109/TCSI.2011.2167271
  • Güneş, E., Keskin, B. 2017. Gıda Bankacılığı: Türkiye için Bir Değerlendirme, III IBANESS Kongresi Series (International Balkan and Near Eastern Social Sciences Congress Series), Sayfa: 335-339, 04-05 Mart 2017, Edirne.
  • Han, S. W., Chee, K. M., & Cho, S. J. (2015). Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chemistry, 172, 766-769. https://doi.org/10.1016/j.foodchem.2014.09.127
  • Hernández-Varela, J. D., Chanona-Pérez, J. J., Benavides, H. A. C., Sodi, F. C., & Vicente-Flores, M. (2021). Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydrate Polymers, 255, 117347. https://doi.org/10.1016/j.carbpol.2020.117347
  • Herrero, M., Thornton, P. K., Mason-D’Croz, D., Palmer, J., Benton, T. G., Bodirsky, B. L., Bogard, J. R., Hall, A., Lee, B., Nyborg, K., Pradhan, P., Bonnett, G. D., Bryan, B. A., Campbell, B. M., Christensen, S., Clark, M., Cook, M. T., de Boer, I. J. M., Downs, C., Dizyee, K., Folberth, C., Godde, C. M., Gerber, J. S., Grundy, M., Havlik, P., Jarvis, A., King, R., Loboguerrero, A. M., Lopes, M. A., Mclntyre, C. L., Naylor, R., Navarro, J., Obersteiner, M., Parodi, A., Peoples, M. B., Pikaar, I., Popp, A., Rockström, J., Robertson, M. J., Smith, P., Stehfest, E., Swain, S. M., Valin, H., van Wijk, M., van Zanten, H. H. E., Vermeulen, S., Vervoort, J., & West, P. C. (2020). Innovation can accelerate the transition towards a sustainable food system. Nature Food, 1(5), 266–272. https://doi.org/10.1038/s43016-020-0074-1
  • Hoek, A. C., Malekpour, S., Raven, R., Court, E., & Byrne, E. (2021). Towards environmentally sustainable food systems: decision-making factors in sustainable food production and consumption. Sustainable Production and Consumption, 26, 610–626. https://doi.org/https://doi.org/10.1016/j.spc.2020.12.009
  • Holt-giménez, E., Shattuck, A., Altieri, M., & Herren, H. (2012). We Already Grow Enough Food for 10 Billion People … and Still Can ’ t End Hunger We Already Grow Enough Food for 10 Billion. 0046. https://doi.org/10.1080/10440046.2012.695331
  • Hossain, M. N., Siddik Bhuyan, M. S., Alam, A. H., & Seo, Y. C. (2018). Biodiesel from Hydrolyzed Waste Cooking Oil Using a S-ZrO2/SBA-15 Super Acid Catalyst under Sub-Critical Conditions. Energies . https://doi.org/10.3390/en11020299
  • IFAD, 2018. http://www.ifad.org/documents/10180/. Erişim: 12 Ağustos 2022
  • Jenkins, E. L., Brennan, L., Molenaar, A., & McCaffrey, T. A. (2022). Exploring the application of social media in food waste campaigns and interventions: A systematic scoping review of the academic and grey literature. Journal of Cleaner Production, 132068.
  • Jörissen, J., Priefer, C., & Bräutigam, K. R. (2015). Food waste generation at household level: Results of a survey among employees of two European research centers in Italy and Germany. Sustainability (Switzerland), 7(3), 2695–2715. https://doi.org/10.3390/su7032695
  • Kamal, H., Le, C. F., Salter, A. M., & Ali, A. (2021). Extraction of protein from food waste: An overview of current status and opportunities. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2455-2475. https://doi.org/10.1111/1541-4337.12739
  • Kazemi, M., Khodaiyan, F., & Hosseini, S. S. (2019). Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT, 105, 182-189. https://doi.org/10.1016/j.lwt.2019.01.060
  • Kumar, S., Kushwaha, R., & Verma, M. L. (2020). Recovery and utilization of bioactives from food processing waste. In M. L. Verma and A. K. Chandel (Eds.), Biotechnological Production of Bioactive Compounds (pp. 37-68). Elsevier. https://doi.org/10.1016/B978-0-444-64323-0.00002-3
  • Kusmayadi, A., Leong, Y. K., Yen, H.-W., Huang, C.-Y., & Chang, J.-S. (2021). Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere, 271, 129800. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.129800
  • Kyriakoudi, A., & Mourtzinos, I. (2022). Green Extraction Technology of Polyphenols from Food By-Products. Foods, 11(8), 1109. https://doi.org/10.3390/foods11081109
  • Lebersorger, S., & Schneider, F. (2014). Food loss rates at the food retail, influencing factors and reasons as a basis for waste prevention measures. Waste Management, 34(11), 1911–1919. https://doi.org/10.1016/j.wasman.2014.06.013
  • Li, S., & Kallas, Z. (2021). Meta-analysis of consumers’ willingness to pay for sustainable food products. Appetite, 163, 105239. https://doi.org/https://doi.org/10.1016/j.appet.2021.105239
  • Li, J., Pettinato, M., Campardelli, R., De Marco, I., & Perego, P. (2022). High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. Applied Sciences, 12(7), 3642. https://doi.org/10.3390/app12073642
  • Lin, C. S. K., Kirpluks, M., Priya, A., & Kaur, G. (2021). Conversion of food waste-derived lipid to bio-based polyurethane foam. Case Studies in Chemical and Environmental Engineering, 4, 100131. https://doi.org/https://doi.org/10.1016/j.cscee.2021.100131
  • Lipinski, B., Hanson, C., Lomax, J., Kitinoja, L., Waite, R., & Searchinger, T. (2016). Toward a sustainable food system Reducing food loss and waste. World Resource Institute, June, 1–40. http://unep.org/wed/docs/WRI-UNEP-Reducing-Food-Loss-and-Waste.pdf%5Cnhttp://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/130211
  • Marín, D., Alemán, A., Montero, P., & Gómez-Guillén, M. C. (2018). Encapsulation of food waste compounds in soy phosphatidylcholine liposomes: Effect of freeze-drying, storage stability and functional aptitude. Journal of Food Engineering, 223, 132-143. https://doi.org/10.1016/j.jfoodeng.2017.12.009
  • McClements, D. J. (2020). Future foods: Is it possible to design a healthier and more sustainable food supply? Nutrition Bulletin, 45(3), 341–354. https://doi.org/https://doi.org/10.1111/nbu.12457
  • McClements, D. J., & Öztürk, B. (2021). Utilization of nanotechnology to improve the application and bioavailability of phytochemicals derived from waste streams. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.1c03020
  • Md Yunos, N. S. H., Chu, C. J., Baharuddin, A. S., Mokhtar, M. N., Sulaiman, A., Rajaeifar, M. A., Larimi, Y. N., Talebi, A. F., Mohammed, M. A. P., Aghbashlo, M., & Tabatabaei, M. (2017). Enhanced oil recovery and lignocellulosic quality from oil palm biomass using combined pretreatment with compressed water and steam. Journal of Cleaner Production, 142, 3834–3849. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.10.078
  • Mendes, A. C., & Pedersen, G. A. (2021). Perspectives on sustainable food packaging:– is bio-based plastics a solution? Trends in Food Science & Technology, 112, 839–846. https://doi.org/https://doi.org/10.1016/j.tifs.2021.03.049
  • Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28-41. https://doi.org/10.1016/j.jclepro.2013.10.051
  • Mohd Thani, N., Mustapa Kamal, S. M., Sulaiman, A., Taip, F. S., Omar, R., & Izhar, S. (2020). Sugar Recovery from Food Waste via Sub-critical Water Treatment. Food Reviews International, 36(3), 241-257. https://doi.org/10.1080/87559129.2019.1636815
  • Motavaf, B., Dean, R. A., Nicolas, J., & Savage, P. E. (2021). Hydrothermal carbonization of simulated food waste for recovery of fatty acids and nutrients. Bioresource Technology, 341, 125872. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125872
  • Mourtzinos, I., & Goula, A. (2019). Polyphenols in agricultural byproducts and food waste. In R. R. Watson (Ed.) Polyphenols in Plants (pp. 23-44). Academic Press. https://doi.org/10.1016/B978-0-12-813768-0.00002-5
  • Movilla-Pateiro, L., Mahou-Lago, X. M., Doval, M. I., & Simal-Gandara, J. (2021). Toward a sustainable metric and indicators for the goal of sustainability in agricultural and food production. Critical Reviews in Food Science and Nutrition, 61(7), 1108–1129. https://doi.org/10.1080/10408398.2020.1754161
  • Nadar, S. S., Rao, P., & Rathod, V. K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309-330. https://doi.org/10.1016/j.foodres.2018.03.006
  • OECD, 2014. Market and Trade Impacts of Food Loss and Waste Reduction. www.oecd.ilibrary.org. Erişim: 12 Ağustos 2022.
  • OECD, 2018. Food Loss and Waste in the Agro-Food Chain.www.oecd.org/tad/policynotes/food-loss-waste-agrofood-cahain.pdf. Erişim: 12 Ağustos 2022.
  • Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205
  • Özyurt, G., Özkütük, A. S., Uçar, Y., Durmuş, M., & Özoğul, Y. (2018). Fatty acid composition and oxidative stability of oils recovered from acid silage and bacterial fermentation of fish (Sea bass – Dicentrarchus labrax) by-products. International Journal of Food Science and Technology, 53(5), 1255–1261. https://doi.org/10.1111/ijfs.13705
  • Pattnaik, M., Pandey, P., Martin, G. J., Mishra, H. N., & Ashokkumar, M. (2021). Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods, 10(2), 279. https://doi.org/10.3390/foods10020279
  • Pawlak, K., & Kołodziejczak, M. (2020). The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability . https://doi.org/10.3390/su12135488
  • Petkowicz, C. L., & Williams, P. A. (2020). Pectins from food waste: Characterization and functional properties of a pectin extracted from broccoli stalk. Food Hydrocolloids, 107, 105930. https://doi.org/10.1016/j.foodhyd.2020.105930
  • Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology, 75, 93-104. https://doi.org/10.1016/j.tifs.2018.03.010
  • Pollini, L., Blasi, F., Ianni, F., Grispoldi, L., Moretti, S., Di Veroli, A., Cossignani, L., & Cenci-Goga, B. T. (2022). Ultrasound-Assisted Extraction and Characterization of Polyphenols from Apple Pomace, Functional Ingredients for Beef Burger Fortification. Molecules, 27(6), 1933. https://doi.org/10.3390/molecules27061933
  • Prandi, B., Faccini, A., Lambertini, F., Bencivenni, M., Jorba, M., Van Droogenbroek, B., Bruggeman, G., Schöber, J., Petrusan, J., Elsti, K., Sforza, S., & Sforza, S. (2019). Food wastes from agrifood industry as possible sources of proteins: A detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chemistry, 286, 567-575. https://doi.org/10.1016/j.foodchem.2019.01.166
  • Radenkovs, V., Kviesis, J., Juhnevica-Radenkova, K., Valdovska, A., Püssa, T., Klavins, M., & Drudze, I. (2018). Valorization of Wild Apple (Malus spp.) By-Products as a Source of Essential Fatty Acids, Tocopherols and Phytosterols with Antimicrobial Activity. Plants. https://doi.org/10.3390/plants7040090
  • Rajeh, C., Saoud, I. P., Kharroubi, S., Naalbandian, S., & Abiad, M. G. (2021). Food loss and food waste recovery as animal feed: a systematic review. Journal of Material Cycles and Waste Management, 23(1), 1-17. https://doi.org/10.1007/s10163-020-01102-6
  • Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies.
  • Rehman, A., Ma, H., Ozturk, I., & Ulucak, R. (2022). Sustainable development and pollution: the effects of CO2 emission on population growth, food production, economic development, and energy consumption in Pakistan. Environmental Science and Pollution Research, 29(12), 17319–17330. https://doi.org/10.1007/s11356-021-16998-2
  • Reichenbach, J. (2008). Status and prospects of pay-as-you-throw in Europe - A review of pilot research and implementation studies. Waste Management, 28(12), 2809–2814. https://doi.org/10.1016/j.wasman.2008.07.008
  • Ren, H.-Y., Kong, F., Cui, Z., Zhao, L., Ma, J., Ren, N.-Q., & Liu, B.-F. (2019). Cogeneration of hydrogen and lipid from stimulated food waste in an integrated dark fermentative and microalgal bioreactor. Bioresource Technology, 287, 121468. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121468
  • Riaz, A., Lagnika, C., Luo, H., Nie, M., Dai, Z., Liu, C., Abdin M., Hashim, M. M., Li, D., & Song, J. (2020). Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films. Carbohydrate Polymers, 235, 115944. https://doi.org/10.1016/j.carbpol.2020.115944
  • Rivas, M. Á., Casquete, R., Martín, A., Córdoba, M. D. G., Aranda, E., & Benito, M. J. (2021). Strategies to increase the biological and biotechnological value of polysaccharides from agricultural waste for application in healthy nutrition. International Journal of Environmental Research and Public Health, 18(11), 5937. https://doi.org/10.3390/ijerph18115937
  • Romano, R., De Luca, L., Aiello, A., Rossi, D., Pizzolongo, F., & Masi, P. (2022). Bioactive compounds extracted by liquid and supercritical carbon dioxide from citrus peels. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.15712
  • Roodhuyzen, D. M. A., Luning, P. A., Fogliano, V., & Steenbekkers, L. P. A. (2017). Putting together the puzzle of consumer food waste: Towards an integral perspective. Trends in Food Science and Technology, 68, 37–50. https://doi.org/10.1016/j.tifs.2017.07.009
  • Santagata, R., Viglia, S., Fiorentino, G., Liu, G., & Ripa, M. (2019). Power generation from slaughterhouse waste materials. An emergy accounting assessment. Journal of Cleaner Production, 223, 536–552. https://doi.org/10.1016/j.jclepro.2019.03.148
  • Shahid, K., Srivastava, V., & Sillanpää, M. (2021). Protein recovery as a resource from waste specifically via membrane technology—from waste to wonder. Environmental Science and Pollution Research, 28(8), 10262-10282. https://doi.org/10.1007/s11356-020-12290-x
  • Sharma, P., Gaur, V. K., Sirohi, R., Varjani, S., Kim, S. H., & Wong, J. W. (2021). Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technology, 325, 124684. https://doi.org/10.1016/j.biortech.2021.124684
  • Singh, B., Szamosi, Z., Siménfalvi, Z., & Rosas-Casals, M. (2020). Decentralized biomass for biogas production. Evaluation and potential assessment in Punjab (India). Energy Reports, 6, 1702-1714.
  • Singh, J. (2017). Management of the agricultural biomass on decentralized basis for producing sustainable power in India. Journal of Cleaner Production, 142, 3985-4000.
  • Skendi, A., Zinoviadou, K. G., Papageorgiou, M., & Rocha, J. M. (2020). Advances on the valorisation and functionalization of by-products and wastes from cereal-based processing industry. Foods, 9(9), 1243. https://doi.org/10.3390/foods9091243
  • Szabo, K., Cătoi, A. F., & Vodnar, D. C. (2018). Bioactive compounds extracted from tomato processing by-products as a source of valuable nutrients. Plant Foods for Human Nutrition, 73(4), 268-277. https://doi.org/10.1007/s11130-018-0691-0
  • Talekar, S., Patti, A. F., Singh, R., Vijayraghavan, R., & Arora, A. (2018). From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Industrial Crops and Products, 112, 790–802. https://doi.org/https://doi.org/10.1016/j.indcrop.2017.12.023
  • Tham, P. E., Ng, Y. J., Sankaran, R., Khoo, K. S., Chew, K. W., Yap, Y. J., Malahubban, M., Zakry F. A. A. & Show, P. L. (2019). Recovery of protein from dairy milk waste product using alcohol-salt liquid biphasic flotation. Processes, 7(12), 875. https://doi.org/10.3390/pr7120875
  • TMO (Toprak Mahsulleri Ofisi), 2013. Ekmek İsrafını Önleme Kampanyası Toplantısı,http://www.tmo.gov.tr/
  • TÜİK (Türkiye İstatistik Kurumu), (2022). Atık İstatistikleri, 2020. https://data.tuik.gov.tr/Bulten/Index?p=Atik-Istatistikleri-2020-37198. (Erişim Tarihi: 15.04.2022).
  • U.S. Environmental Protection Agency. (2016). United States 2030 Food Loss and Waste Reduction Goal. Washington DC. Available at: https://www.epa.gov/sustainablemanagement-food/united-states2030-food-loss-and-waste-reduction-goal.
  • Birleşmiş Milletler Gıda Atıkları Endeksi, (2021). https://www.iklimhaber.org/. Erişim Tarihi: 18.04.2022.
  • Birleşmiş Milletler Gıda Atıkları Endeksi, (2021). https://www.iklimhaber.org/. Erişim Tarihi: 18.04.2022.
  • Vigano, J., da Fonseca Machado, A. P., & Martinez, J. (2015). Sub-and supercritical fluid technology applied to food waste processing. The Journal of Supercritical Fluids, 96, 272-286. https://doi.org/10.1016/j.supflu.2014.09.026
  • Vilas-Boas, A. A., Pintado, M., & Oliveira, A. L. (2021). Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods, 10(7), 1564. https://doi.org/10.3390/foods10071564
  • VTT, (2022). The next big thing for food: cellular agriculture. Retrieved April 14, 2022, from https://info.vttresearch.com/download-cellular-agriculture-handbook. Erişim Tarihi: 14.04.2022.
  • Wang, Y., Wang, W., Jia, H., Gao, G., Wang, X., Zhang, X., & Wang, Y. (2018). Using cellulose nanofibers and its palm oil pickering emulsion as fat substitutes in emulsified sausage. Journal of Food Science, 83(6), 1740-1747. https://doi.org/10.1111/1750-3841.14164
  • Wang, X., Zhang, M.-M., Sun, Z., Liu, S.-F., Qin, Z.-H., Mou, J.-H., Zhou, Z.-G., & Lin, C. S. K. (2020). Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. Journal of Hazardous Materials, 400, 123258. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.123258
  • Weber, O., & Hogberg-Saunders, G. (2018). Water management and corporate social performance in the food and beverage industry. Journal of Cleaner Production, 195, 963–977. https://doi.org/10.1016/j.jclepro.2018.05.269
  • Yusoff, I. M., Taher, Z. M., Rahmat, Z., & Chua, L. S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 111268. https://doi.org/10.1016/j.foodres.2022.111268
  • Zamri, G. B., Azizal, N. K. A., Nakamura, S., Okada, K., Nordin, N. H., Othman, N., ... & Hara, H. (2020). Delivery, impact and approach of household food waste reduction campaigns. Journal of Cleaner Production, 246, 118969.

Sürdürülebilir Gıda ve Tarımsal Atık Yönetimi

Yıl 2022, Cilt: 23 Sayı: 2, 145 - 160, 30.11.2022

Öz

İnsan nüfusu artış hızına bağlı olarak gıda üretim hızı da yükselmektedir. Hızlı bir şekilde artan gıda üretimi nedeniyle, hem tarımsal atık miktarlarında benzer oranda bir artış meydana gelmekte, hem de bu durum sınırlı olan doğal kaynakların tüketilmesine ve kirletilmesine neden olmaktadır. Bu bağlamda, özellikle sürdürülebilir gıda üretim politikalarını benimsemeyen paydaşların yüksek israf miktarları, ekonomik maliyet, çevre ve gıda güvenliği konularına ciddi zararlar vermektedir. Bu çalışma kapsamında; atık, israf, atık yönetimi ile gıda üretiminde sürdürülebilirlik kavramları hakkında bilgi verilmiştir. Ayrıca, gıda israfı üzerine etkili olan faktörlerden, gıda tedarik zincirinde meydana gelen olası gıda kayıp ve atıklarından, doğal kaynakların tüketilmesinin önlenmesi ve sürdürülebilirliğin sağlanması amacıyla uygulanması gereken eylemlerden bahsedilmiştir. Bunların yanı sıra, tarımsal atıkların, karbonhidrat, yağ, protein ve biyoaktif bileşen gibi katma değeri yüksek ürünlere dönüştürülmesi ve geri kazanılan bu ürünlerin kullanım alanları konusunda gerçekleştirilen çalışmalar derlenmiştir.

Kaynakça

  • Adelodun, B., Kim, S. H., Odey, G., & Choi, K. S. (2021). Assessment of environmental and economic aspects of household food waste using a new Environmental-Economic Footprint (EN-EC) index: A case study of Daegu, South Korea. Science of the Total Environment, 776, 145928. https://doi.org/10.1016/j.scitotenv.2021.145928
  • Alfio, V. G., Manzo, C., & Micillo, R. (2021). From Fish Waste to Value: An Overview of the Sustainable Recovery of Omega-3 for Food Supplements. Molecules https://doi.org/10.3390/molecules26041002
  • Alvi, T., Asif, Z., & Khan, M. K. I. (2022). Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review. Food Bioscience, 101580. https://doi.org/10.1016/j.fbio.2022.101580
  • Alzuwaid, N. T., Sissons, M., Laddomada, B., & Fellows, C. M. (2020). Nutritional and functional properties of durum wheat bran protein concentrate. Cereal Chemistry, 97(2), 304-315. https://doi.org/10.1002/cche.10246
  • Atık Yönetimi Yönetmeliği, (2015). Atık Yönetimi Yönetmeliği. T.C. Resmî Gazete (29314, 2 Nisan 2015).
  • Awasthi, M. K., Tarafdar, A., Gaur, V. K., Amulya, K., Narisetty, V., Yadav, D. K., Sindhu, R., Binod, P., Negi, T., Pandey, A., Zhang, Z., & Sirohi, R. (2022). Emerging trends of microbial technology for the production of oligosaccharides from biowaste and their potential application as prebiotic. International Journal of Food Microbiology, 109610. https://doi.org/10.1016/j.ijfoodmicro.2022.109610
  • Balasubramaniam, V. M. (2021). Process development of high pressure-based technologies for food: research advances and future perspectives. Current Opinion in Food Science, 42, 270-277. https://doi.org/10.1016/j.cofs.2021.10.001
  • Banerjee, S., Patti, A. F., Ranganathan, V., & Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing, 117, 38-50. https://doi.org/10.1016/j.fbp.2019.06.012
  • Bassani, A., Carullo, D., Rossi, F., Fiorentini, C., Garrido, G. D., Reklaitis, G. V., Bonadies, I., & Spigno, G. (2022). Modeling of a spray-drying process for the encapsulation of high-added value extracts from food by-products. Computers & Chemical Engineering, 161, 107772. https://doi.org/10.1016/j.compchemeng.2022.107772
  • Bellemare, M. F., Çakir, M., Peterson, H. H., Novak, L., & Rudi, J. (2017). On the Measurement of Food Waste. American Journal of Agricultural Economics, 99(5), 1148–1158. https://doi.org/10.1093/ajae/aax034
  • Benassi, L., Alessandri, I., & Vassalini, I. (2021). Assessing Green Methods for Pectin Extraction from Waste Orange Peels. Molecules, 26(6), 1766. https://doi.org/10.3390/molecules26061766
  • Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 105, 385-401. https://doi.org/10.1016/j.tifs.2020.09.015
  • Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(6), 615–626. https://doi.org/https://doi.org/10.1016/j.tibtech.2017.11.001
  • Bureau Veritas. (2020). 4 Ways to Make Food Processing More Sustainable. Retrieved April 14, 2022, from https://certification.bureauveritas.com/magazine/4-ways-make-food-processing-more-sustainable
  • Calvo, T. R. A., Santagapita, P. R., & Perullini, M. (2019). Functional and structural effects of hydrocolloids on Ca (II)-alginate beads containing bioactive compounds extracted from beetroot. LWT, 111, 520-526. https://doi.org/10.1016/j.lwt.2019.05.047
  • Camaréna, S. (2020). Artificial intelligence in the design of the transitions to sustainable food systems. Journal of Cleaner Production, 271, 122574. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122574
  • Cano, M. E., García-Martin, A., Comendador Morales, P., Wojtusik, M., Santos, V. E., Kovensky, J., & Ladero, M. (2020). Production of oligosaccharides from agrofood wastes. Fermentation, 6(1), 31. https://doi.org/10.3390/fermentation6010031
  • Carmona-Cabello, M., Garcia, I. L., Leiva-Candia, D., & Dorado, M. P. (2018). Valorization of food waste based on its composition through the concept of biorefinery. Current Opinion in Green and Sustainable Chemistry, 14, 67–79. https://doi.org/https://doi.org/10.1016/j.cogsc.2018.06.011
  • Carrillo, C., Nieto, G., Martínez-Zamora, L., Ros, G., Kamiloglu, S., Munekata, P. E., Pateiro, M., Lorenzo, J. M., Fernández-López, J., Viuda-Martos, M., Pérez-Álvarez, J. Á. & Barba, F. J. (2022). Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.1c07208
  • Chalak, A., Abou-Daher, C., Chaaban, J., & Abiad, M. G. (2016). The global economic and regulatory determinants of household food waste generation: A cross-country analysis. Waste Management, 48(2016), 418–422. https://doi.org/10.1016/j.wasman.2015.11.040
  • Coelho, C. C., Michelin, M., Cerqueira, M. A., Gonçalves, C., Tonon, R. V., Pastrana, L. M., Freitas-Silva, O., Vicente, A. A., Cabral, L. M. C., & Teixeira, J. A. (2018). Cellulose nanocrystals from grape pomace: production, properties and cytotoxicity assessment. Carbohydrate Polymers, 192, 327-336. https://doi.org/10.1016/j.carbpol.2018.03.023
  • Craig, H., Lipinski, B., Robertson, K., Dias, D., Gavilan, I., & Gréverath, P. (2016). Food Loss and Waste Accounting and Reporting Standard. Executive summary. FLW Protocol, 160. https://www.wbcsd.org/Programs/Food-and-Nature/Food-Land-Use/Climate-Smart-Agriculture/Resources/Food-Loss-and-Waste-Accounting-and-Reporting-Standard
  • Çerçİoğlu, M. (2019). Sürdürülebilir Atık Yönetiminde Sera Atıklarının Kompost Olarak Değerlendirilmesi. 33(1), 167–177.
  • Çirişoğlu, E., & Akoğlu, A. (2021). Restoranlarda Oluşan Gıda Atıkları ve Yönetimi: İstanbul İli Örneği. Akademik Gıda, 19(1), 38–48. https://doi.org/10.24323/akademik-gida.927664
  • Dahlén, L., & Lagerkvist, A. (2010). Pay as you throw. Strengths and weaknesses of weight-based billing in household waste collection systems in Sweden. Waste Management, 30(1), 23–31. https://doi.org/10.1016/j.wasman.2009.09.022
  • Daido, M. (1987). A recovery and reuse system for fatty oils from by-products and waste materials of vegetable fatty oil production. Conservation & Recycling, 10(4), 273–278. https://doi.org/https://doi.org/10.1016/0361-3658(87)90058-0
  • De Bernardi, P., & Azucar, D. (2020). Innovative and Sustainable Food Business Models BT - Innovation in Food Ecosystems: Entrepreneurship for a Sustainable Future. In P. De Bernardi & D. Azucar (Eds.) (pp. 189–221). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-33502-1_7
  • De Brier, N., Gomand, S. V., Celus, I., Courtin, C. M., Brijs, K., & Delcour, J. A. (2015). Extractability and chromatographic characterization of wheat (Triticum aestivum L.) bran protein. Journal of food science, 80(5), C967-C974. https://doi.org/10.1111/1750-3841.12856
  • Demirbaş, N. (2018). Dünyada ve Türkiye’de gıda israfını önleme çalışmalarının değerlendirilmesi. VIII. IBANESS Kongreler Serisi, Plovdiv, Bulgaristan, 21(22), 521-526.
  • Dini, I. (2021). Bio Discarded from Waste to Resource. Foods, 10(11), 2652. https://doi.org/10.3390/foods10112652
  • Doria, E., Buonocore, D., Marra, A., Bontà, V., Gazzola, A., Dossena, M., Verri M. & Calvio, C. (2022). Bacterial-Assisted Extraction of Bioactive Compounds from Cauliflower. Plants, 11(6), 816. https://doi.org/10.3390/plants11060816
  • Ebrahimi, P., & Lante, A. (2022). Environmentally Friendly Techniques for the Recovery of Polyphenols from Food By-Products and Their Impact on Polyphenol Oxidase: A Critical Review. Applied Sciences, 12(4), 1923. https://doi.org/10.3390/app12041923
  • Eissa, M. A., Nasralla, N. N., Gomah, N. H., Osman, D. M., & El-Derwy, Y. M. (2018). Evaluation of natural fertilizer extracted from expired dairy products as a soil amendment. Journal of Soil Science and Plant Nutrition, 18(3), 694-704. http://dx.doi.org/10.4067/S0718-95162018005002002
  • El Bilali, H., & Hassen, T. Ben. (2020). Food waste in the countries of the gulf cooperation council: A systematic review. Foods, 9(4), 7–9. https://doi.org/10.3390/foods9040463
  • Eriksson, M., & Spångberg, J. (2017). Carbon footprint and energy use of food waste management options for fresh fruit and vegetables from supermarkets. Waste Management, 60, 786–799. https://doi.org/10.1016/j.wasman.2017.01.008
  • FAO (Food and Agriculture Organization), (2013). Food wastage footprint: ımpacts on natural resources. http://www.fao.org/docrep/018/i3347e/i3347e.pdf (Erişim Tarihi: 17.04.2022).
  • FAO, (2014). Building a Common Vision for Sustainable Food and Agriculture. American Journal of Evaluation, 4(4), 63–65.
  • FAO, (2018). 20 Interconnected Actions To Guide Decision-Makers. In Transforming Food and Agriculture To Achieve The SDGs (pp. 1–76).
  • FAO, (2022). Food Loss and Food Waste. http://www.fao.org/food-loss-and-food-waste/en. (Erişim Tarihi: 17.04.2022).
  • Faustino, M., Veiga, M., Sousa, P., Costa, E. M., Silva, S., & Pintado, M. (2019). Agro-food byproducts as a new source of natural food additives. Molecules, 24(6), 1056. https://doi.org/10.3390/molecules24061056
  • Frehner, A., De Boer, I. J. M., Muller, A., Van Zanten, H. H. E., & Schader, C. (2022). Consumer strategies towards a more sustainable food system: insights from Switzerland. The American Journal of Clinical Nutrition, 115(4), 1039–1047. https://doi.org/10.1093/ajcn/nqab401
  • FUSIONS. (2016). Estimates of European food waste levels. Brussels, Belgium: European Union.
  • Gautério, G. V., da Silva, L. G. G., Hübner, T., da Rosa Ribeiro, T., & Kalil, S. J. (2020). Maximization of xylanase production by Aureobasidium pullulans using a by-product of rice grain milling as xylan source. Biocatalysis and Agricultural Biotechnology, 23, 101511. https://doi.org/10.1016/j.bcab.2020.101511
  • Gavahian, M., Mathad, G. N., Pandiselvam, R., Lin, J., & Sun, D. W. (2021). Emerging technologies to obtain pectin from food processing by-products: A strategy for enhancing resource efficiency. Trends in Food Science & Technology, 115, 42-54. https://doi.org/10.1016/j.tifs.2021.06.018
  • Georganas, A., Giamouri, E., Pappas, A. C., Papadomichelakis, G., Galliou, F., Manios, T., Tsiplakou, E., Fegeros, K. & Zervas, G. (2020). Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods, 9(3), 291. https://doi.org/10.3390/foods9030291
  • Gheewala, S. H., Jungbluth, N., Notarnicola, B., Ridoutt, B., & van der Werf, H. (2020). No simple menu for sustainable food production and consumption. The International Journal of Life Cycle Assessment, 25(7), 1175–1182. https://doi.org/10.1007/s11367-020-01783-z
  • Ghosh, S., Gillis, A., Sheviryov, J., Levkov, K., & Golberg, A. (2019). Towards waste meat biorefinery: Extraction of proteins from waste chicken meat with non-thermal pulsed electric fields and mechanical pressing. Journal of Cleaner Production, 208, 220-231. https://doi.org/10.1016/j.jclepro.2018.10.037
  • Gigliobianco, M. R., Cortese, M., Nannini, S., Di Nicolantonio, L., Peregrina, D. V., Lupidi, G., Vitali, L. C., Boccietto, E., Di Martino, P. & Censi, R. (2022). Chemical, Antioxidant, and Antimicrobial Properties of the Peel and Male Flower By-Products of Four Varieties of Punica granatum L. Cultivated in the Marche Region for Their Use in Cosmetic Products. Antioxidants, 11(4), 768. https://doi.org/10.3390/antiox11040768
  • Gil-Ramirez, A., Salas-Veizaga, D. M., Grey, C., Karlsson, E. N., Rodriguez-Meizoso, I., & Linares-Pastén, J. A. (2018). Integrated process for sequential extraction of saponins, xylan and cellulose from quinoa stalks (Chenopodium quinoa Willd.). Industrial Crops and Products, 121, 54-65. https://doi.org/10.1016/j.indcrop.2018.04.074
  • Glasgo, B., Azevedo, I. L., & Hendrickson, C. (2016). How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings. Applied Energy, 180, 66–75. https://doi.org/10.1016/j.apenergy.2016.07.036
  • Görgüç, A., Özer, P., & Yılmaz, F. M. (2020). Microwave‐assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q‐TOF/MS. Journal of Food Processing and Preservation, 44(1), e14304. https://doi.org/10.1111/jfpp.14304
  • Gu, H., Gao, X., Zhang, H., Chen, K., & Peng, L. (2020). Fabrication and characterization of cellulose nanoparticles from maize stalk pith via ultrasonic-mediated cationic etherification. Ultrasonics Sonochemistry, 66, 104932. https://doi.org/10.1016/j.ultsonch.2019.104932
  • Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste (pp. 1–38). Rome: FAO.
  • Gustavsson, U., Eriksson, T., Nemati, H. M., Saad, P., Singerl, P., & Fager, C. (2012). An RF carrier bursting system using partial quantization noise cancellation. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(3), 515–528. https://doi.org/10.1109/TCSI.2011.2167271
  • Güneş, E., Keskin, B. 2017. Gıda Bankacılığı: Türkiye için Bir Değerlendirme, III IBANESS Kongresi Series (International Balkan and Near Eastern Social Sciences Congress Series), Sayfa: 335-339, 04-05 Mart 2017, Edirne.
  • Han, S. W., Chee, K. M., & Cho, S. J. (2015). Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chemistry, 172, 766-769. https://doi.org/10.1016/j.foodchem.2014.09.127
  • Hernández-Varela, J. D., Chanona-Pérez, J. J., Benavides, H. A. C., Sodi, F. C., & Vicente-Flores, M. (2021). Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydrate Polymers, 255, 117347. https://doi.org/10.1016/j.carbpol.2020.117347
  • Herrero, M., Thornton, P. K., Mason-D’Croz, D., Palmer, J., Benton, T. G., Bodirsky, B. L., Bogard, J. R., Hall, A., Lee, B., Nyborg, K., Pradhan, P., Bonnett, G. D., Bryan, B. A., Campbell, B. M., Christensen, S., Clark, M., Cook, M. T., de Boer, I. J. M., Downs, C., Dizyee, K., Folberth, C., Godde, C. M., Gerber, J. S., Grundy, M., Havlik, P., Jarvis, A., King, R., Loboguerrero, A. M., Lopes, M. A., Mclntyre, C. L., Naylor, R., Navarro, J., Obersteiner, M., Parodi, A., Peoples, M. B., Pikaar, I., Popp, A., Rockström, J., Robertson, M. J., Smith, P., Stehfest, E., Swain, S. M., Valin, H., van Wijk, M., van Zanten, H. H. E., Vermeulen, S., Vervoort, J., & West, P. C. (2020). Innovation can accelerate the transition towards a sustainable food system. Nature Food, 1(5), 266–272. https://doi.org/10.1038/s43016-020-0074-1
  • Hoek, A. C., Malekpour, S., Raven, R., Court, E., & Byrne, E. (2021). Towards environmentally sustainable food systems: decision-making factors in sustainable food production and consumption. Sustainable Production and Consumption, 26, 610–626. https://doi.org/https://doi.org/10.1016/j.spc.2020.12.009
  • Holt-giménez, E., Shattuck, A., Altieri, M., & Herren, H. (2012). We Already Grow Enough Food for 10 Billion People … and Still Can ’ t End Hunger We Already Grow Enough Food for 10 Billion. 0046. https://doi.org/10.1080/10440046.2012.695331
  • Hossain, M. N., Siddik Bhuyan, M. S., Alam, A. H., & Seo, Y. C. (2018). Biodiesel from Hydrolyzed Waste Cooking Oil Using a S-ZrO2/SBA-15 Super Acid Catalyst under Sub-Critical Conditions. Energies . https://doi.org/10.3390/en11020299
  • IFAD, 2018. http://www.ifad.org/documents/10180/. Erişim: 12 Ağustos 2022
  • Jenkins, E. L., Brennan, L., Molenaar, A., & McCaffrey, T. A. (2022). Exploring the application of social media in food waste campaigns and interventions: A systematic scoping review of the academic and grey literature. Journal of Cleaner Production, 132068.
  • Jörissen, J., Priefer, C., & Bräutigam, K. R. (2015). Food waste generation at household level: Results of a survey among employees of two European research centers in Italy and Germany. Sustainability (Switzerland), 7(3), 2695–2715. https://doi.org/10.3390/su7032695
  • Kamal, H., Le, C. F., Salter, A. M., & Ali, A. (2021). Extraction of protein from food waste: An overview of current status and opportunities. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2455-2475. https://doi.org/10.1111/1541-4337.12739
  • Kazemi, M., Khodaiyan, F., & Hosseini, S. S. (2019). Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT, 105, 182-189. https://doi.org/10.1016/j.lwt.2019.01.060
  • Kumar, S., Kushwaha, R., & Verma, M. L. (2020). Recovery and utilization of bioactives from food processing waste. In M. L. Verma and A. K. Chandel (Eds.), Biotechnological Production of Bioactive Compounds (pp. 37-68). Elsevier. https://doi.org/10.1016/B978-0-444-64323-0.00002-3
  • Kusmayadi, A., Leong, Y. K., Yen, H.-W., Huang, C.-Y., & Chang, J.-S. (2021). Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere, 271, 129800. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.129800
  • Kyriakoudi, A., & Mourtzinos, I. (2022). Green Extraction Technology of Polyphenols from Food By-Products. Foods, 11(8), 1109. https://doi.org/10.3390/foods11081109
  • Lebersorger, S., & Schneider, F. (2014). Food loss rates at the food retail, influencing factors and reasons as a basis for waste prevention measures. Waste Management, 34(11), 1911–1919. https://doi.org/10.1016/j.wasman.2014.06.013
  • Li, S., & Kallas, Z. (2021). Meta-analysis of consumers’ willingness to pay for sustainable food products. Appetite, 163, 105239. https://doi.org/https://doi.org/10.1016/j.appet.2021.105239
  • Li, J., Pettinato, M., Campardelli, R., De Marco, I., & Perego, P. (2022). High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. Applied Sciences, 12(7), 3642. https://doi.org/10.3390/app12073642
  • Lin, C. S. K., Kirpluks, M., Priya, A., & Kaur, G. (2021). Conversion of food waste-derived lipid to bio-based polyurethane foam. Case Studies in Chemical and Environmental Engineering, 4, 100131. https://doi.org/https://doi.org/10.1016/j.cscee.2021.100131
  • Lipinski, B., Hanson, C., Lomax, J., Kitinoja, L., Waite, R., & Searchinger, T. (2016). Toward a sustainable food system Reducing food loss and waste. World Resource Institute, June, 1–40. http://unep.org/wed/docs/WRI-UNEP-Reducing-Food-Loss-and-Waste.pdf%5Cnhttp://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/130211
  • Marín, D., Alemán, A., Montero, P., & Gómez-Guillén, M. C. (2018). Encapsulation of food waste compounds in soy phosphatidylcholine liposomes: Effect of freeze-drying, storage stability and functional aptitude. Journal of Food Engineering, 223, 132-143. https://doi.org/10.1016/j.jfoodeng.2017.12.009
  • McClements, D. J. (2020). Future foods: Is it possible to design a healthier and more sustainable food supply? Nutrition Bulletin, 45(3), 341–354. https://doi.org/https://doi.org/10.1111/nbu.12457
  • McClements, D. J., & Öztürk, B. (2021). Utilization of nanotechnology to improve the application and bioavailability of phytochemicals derived from waste streams. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.1c03020
  • Md Yunos, N. S. H., Chu, C. J., Baharuddin, A. S., Mokhtar, M. N., Sulaiman, A., Rajaeifar, M. A., Larimi, Y. N., Talebi, A. F., Mohammed, M. A. P., Aghbashlo, M., & Tabatabaei, M. (2017). Enhanced oil recovery and lignocellulosic quality from oil palm biomass using combined pretreatment with compressed water and steam. Journal of Cleaner Production, 142, 3834–3849. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.10.078
  • Mendes, A. C., & Pedersen, G. A. (2021). Perspectives on sustainable food packaging:– is bio-based plastics a solution? Trends in Food Science & Technology, 112, 839–846. https://doi.org/https://doi.org/10.1016/j.tifs.2021.03.049
  • Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28-41. https://doi.org/10.1016/j.jclepro.2013.10.051
  • Mohd Thani, N., Mustapa Kamal, S. M., Sulaiman, A., Taip, F. S., Omar, R., & Izhar, S. (2020). Sugar Recovery from Food Waste via Sub-critical Water Treatment. Food Reviews International, 36(3), 241-257. https://doi.org/10.1080/87559129.2019.1636815
  • Motavaf, B., Dean, R. A., Nicolas, J., & Savage, P. E. (2021). Hydrothermal carbonization of simulated food waste for recovery of fatty acids and nutrients. Bioresource Technology, 341, 125872. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125872
  • Mourtzinos, I., & Goula, A. (2019). Polyphenols in agricultural byproducts and food waste. In R. R. Watson (Ed.) Polyphenols in Plants (pp. 23-44). Academic Press. https://doi.org/10.1016/B978-0-12-813768-0.00002-5
  • Movilla-Pateiro, L., Mahou-Lago, X. M., Doval, M. I., & Simal-Gandara, J. (2021). Toward a sustainable metric and indicators for the goal of sustainability in agricultural and food production. Critical Reviews in Food Science and Nutrition, 61(7), 1108–1129. https://doi.org/10.1080/10408398.2020.1754161
  • Nadar, S. S., Rao, P., & Rathod, V. K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309-330. https://doi.org/10.1016/j.foodres.2018.03.006
  • OECD, 2014. Market and Trade Impacts of Food Loss and Waste Reduction. www.oecd.ilibrary.org. Erişim: 12 Ağustos 2022.
  • OECD, 2018. Food Loss and Waste in the Agro-Food Chain.www.oecd.org/tad/policynotes/food-loss-waste-agrofood-cahain.pdf. Erişim: 12 Ağustos 2022.
  • Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205
  • Özyurt, G., Özkütük, A. S., Uçar, Y., Durmuş, M., & Özoğul, Y. (2018). Fatty acid composition and oxidative stability of oils recovered from acid silage and bacterial fermentation of fish (Sea bass – Dicentrarchus labrax) by-products. International Journal of Food Science and Technology, 53(5), 1255–1261. https://doi.org/10.1111/ijfs.13705
  • Pattnaik, M., Pandey, P., Martin, G. J., Mishra, H. N., & Ashokkumar, M. (2021). Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods, 10(2), 279. https://doi.org/10.3390/foods10020279
  • Pawlak, K., & Kołodziejczak, M. (2020). The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability . https://doi.org/10.3390/su12135488
  • Petkowicz, C. L., & Williams, P. A. (2020). Pectins from food waste: Characterization and functional properties of a pectin extracted from broccoli stalk. Food Hydrocolloids, 107, 105930. https://doi.org/10.1016/j.foodhyd.2020.105930
  • Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology, 75, 93-104. https://doi.org/10.1016/j.tifs.2018.03.010
  • Pollini, L., Blasi, F., Ianni, F., Grispoldi, L., Moretti, S., Di Veroli, A., Cossignani, L., & Cenci-Goga, B. T. (2022). Ultrasound-Assisted Extraction and Characterization of Polyphenols from Apple Pomace, Functional Ingredients for Beef Burger Fortification. Molecules, 27(6), 1933. https://doi.org/10.3390/molecules27061933
  • Prandi, B., Faccini, A., Lambertini, F., Bencivenni, M., Jorba, M., Van Droogenbroek, B., Bruggeman, G., Schöber, J., Petrusan, J., Elsti, K., Sforza, S., & Sforza, S. (2019). Food wastes from agrifood industry as possible sources of proteins: A detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chemistry, 286, 567-575. https://doi.org/10.1016/j.foodchem.2019.01.166
  • Radenkovs, V., Kviesis, J., Juhnevica-Radenkova, K., Valdovska, A., Püssa, T., Klavins, M., & Drudze, I. (2018). Valorization of Wild Apple (Malus spp.) By-Products as a Source of Essential Fatty Acids, Tocopherols and Phytosterols with Antimicrobial Activity. Plants. https://doi.org/10.3390/plants7040090
  • Rajeh, C., Saoud, I. P., Kharroubi, S., Naalbandian, S., & Abiad, M. G. (2021). Food loss and food waste recovery as animal feed: a systematic review. Journal of Material Cycles and Waste Management, 23(1), 1-17. https://doi.org/10.1007/s10163-020-01102-6
  • Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies.
  • Rehman, A., Ma, H., Ozturk, I., & Ulucak, R. (2022). Sustainable development and pollution: the effects of CO2 emission on population growth, food production, economic development, and energy consumption in Pakistan. Environmental Science and Pollution Research, 29(12), 17319–17330. https://doi.org/10.1007/s11356-021-16998-2
  • Reichenbach, J. (2008). Status and prospects of pay-as-you-throw in Europe - A review of pilot research and implementation studies. Waste Management, 28(12), 2809–2814. https://doi.org/10.1016/j.wasman.2008.07.008
  • Ren, H.-Y., Kong, F., Cui, Z., Zhao, L., Ma, J., Ren, N.-Q., & Liu, B.-F. (2019). Cogeneration of hydrogen and lipid from stimulated food waste in an integrated dark fermentative and microalgal bioreactor. Bioresource Technology, 287, 121468. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121468
  • Riaz, A., Lagnika, C., Luo, H., Nie, M., Dai, Z., Liu, C., Abdin M., Hashim, M. M., Li, D., & Song, J. (2020). Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films. Carbohydrate Polymers, 235, 115944. https://doi.org/10.1016/j.carbpol.2020.115944
  • Rivas, M. Á., Casquete, R., Martín, A., Córdoba, M. D. G., Aranda, E., & Benito, M. J. (2021). Strategies to increase the biological and biotechnological value of polysaccharides from agricultural waste for application in healthy nutrition. International Journal of Environmental Research and Public Health, 18(11), 5937. https://doi.org/10.3390/ijerph18115937
  • Romano, R., De Luca, L., Aiello, A., Rossi, D., Pizzolongo, F., & Masi, P. (2022). Bioactive compounds extracted by liquid and supercritical carbon dioxide from citrus peels. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.15712
  • Roodhuyzen, D. M. A., Luning, P. A., Fogliano, V., & Steenbekkers, L. P. A. (2017). Putting together the puzzle of consumer food waste: Towards an integral perspective. Trends in Food Science and Technology, 68, 37–50. https://doi.org/10.1016/j.tifs.2017.07.009
  • Santagata, R., Viglia, S., Fiorentino, G., Liu, G., & Ripa, M. (2019). Power generation from slaughterhouse waste materials. An emergy accounting assessment. Journal of Cleaner Production, 223, 536–552. https://doi.org/10.1016/j.jclepro.2019.03.148
  • Shahid, K., Srivastava, V., & Sillanpää, M. (2021). Protein recovery as a resource from waste specifically via membrane technology—from waste to wonder. Environmental Science and Pollution Research, 28(8), 10262-10282. https://doi.org/10.1007/s11356-020-12290-x
  • Sharma, P., Gaur, V. K., Sirohi, R., Varjani, S., Kim, S. H., & Wong, J. W. (2021). Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technology, 325, 124684. https://doi.org/10.1016/j.biortech.2021.124684
  • Singh, B., Szamosi, Z., Siménfalvi, Z., & Rosas-Casals, M. (2020). Decentralized biomass for biogas production. Evaluation and potential assessment in Punjab (India). Energy Reports, 6, 1702-1714.
  • Singh, J. (2017). Management of the agricultural biomass on decentralized basis for producing sustainable power in India. Journal of Cleaner Production, 142, 3985-4000.
  • Skendi, A., Zinoviadou, K. G., Papageorgiou, M., & Rocha, J. M. (2020). Advances on the valorisation and functionalization of by-products and wastes from cereal-based processing industry. Foods, 9(9), 1243. https://doi.org/10.3390/foods9091243
  • Szabo, K., Cătoi, A. F., & Vodnar, D. C. (2018). Bioactive compounds extracted from tomato processing by-products as a source of valuable nutrients. Plant Foods for Human Nutrition, 73(4), 268-277. https://doi.org/10.1007/s11130-018-0691-0
  • Talekar, S., Patti, A. F., Singh, R., Vijayraghavan, R., & Arora, A. (2018). From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Industrial Crops and Products, 112, 790–802. https://doi.org/https://doi.org/10.1016/j.indcrop.2017.12.023
  • Tham, P. E., Ng, Y. J., Sankaran, R., Khoo, K. S., Chew, K. W., Yap, Y. J., Malahubban, M., Zakry F. A. A. & Show, P. L. (2019). Recovery of protein from dairy milk waste product using alcohol-salt liquid biphasic flotation. Processes, 7(12), 875. https://doi.org/10.3390/pr7120875
  • TMO (Toprak Mahsulleri Ofisi), 2013. Ekmek İsrafını Önleme Kampanyası Toplantısı,http://www.tmo.gov.tr/
  • TÜİK (Türkiye İstatistik Kurumu), (2022). Atık İstatistikleri, 2020. https://data.tuik.gov.tr/Bulten/Index?p=Atik-Istatistikleri-2020-37198. (Erişim Tarihi: 15.04.2022).
  • U.S. Environmental Protection Agency. (2016). United States 2030 Food Loss and Waste Reduction Goal. Washington DC. Available at: https://www.epa.gov/sustainablemanagement-food/united-states2030-food-loss-and-waste-reduction-goal.
  • Birleşmiş Milletler Gıda Atıkları Endeksi, (2021). https://www.iklimhaber.org/. Erişim Tarihi: 18.04.2022.
  • Birleşmiş Milletler Gıda Atıkları Endeksi, (2021). https://www.iklimhaber.org/. Erişim Tarihi: 18.04.2022.
  • Vigano, J., da Fonseca Machado, A. P., & Martinez, J. (2015). Sub-and supercritical fluid technology applied to food waste processing. The Journal of Supercritical Fluids, 96, 272-286. https://doi.org/10.1016/j.supflu.2014.09.026
  • Vilas-Boas, A. A., Pintado, M., & Oliveira, A. L. (2021). Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods, 10(7), 1564. https://doi.org/10.3390/foods10071564
  • VTT, (2022). The next big thing for food: cellular agriculture. Retrieved April 14, 2022, from https://info.vttresearch.com/download-cellular-agriculture-handbook. Erişim Tarihi: 14.04.2022.
  • Wang, Y., Wang, W., Jia, H., Gao, G., Wang, X., Zhang, X., & Wang, Y. (2018). Using cellulose nanofibers and its palm oil pickering emulsion as fat substitutes in emulsified sausage. Journal of Food Science, 83(6), 1740-1747. https://doi.org/10.1111/1750-3841.14164
  • Wang, X., Zhang, M.-M., Sun, Z., Liu, S.-F., Qin, Z.-H., Mou, J.-H., Zhou, Z.-G., & Lin, C. S. K. (2020). Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. Journal of Hazardous Materials, 400, 123258. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.123258
  • Weber, O., & Hogberg-Saunders, G. (2018). Water management and corporate social performance in the food and beverage industry. Journal of Cleaner Production, 195, 963–977. https://doi.org/10.1016/j.jclepro.2018.05.269
  • Yusoff, I. M., Taher, Z. M., Rahmat, Z., & Chua, L. S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 111268. https://doi.org/10.1016/j.foodres.2022.111268
  • Zamri, G. B., Azizal, N. K. A., Nakamura, S., Okada, K., Nordin, N. H., Othman, N., ... & Hara, H. (2020). Delivery, impact and approach of household food waste reduction campaigns. Journal of Cleaner Production, 246, 118969.
Toplam 127 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derlemeler
Yazarlar

Gülay Özkan 0000-0002-6375-1608

Büşra Gültekin Subaşı 0000-0002-5304-3157

Senem Kamiloğlu Beştepe 0000-0003-3902-4360

Esra Çapanoğlu Güven 0000-0003-0335-9433

Yayımlanma Tarihi 30 Kasım 2022
Gönderilme Tarihi 16 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 23 Sayı: 2

Kaynak Göster

APA Özkan, G., Gültekin Subaşı, B., Kamiloğlu Beştepe, S., Çapanoğlu Güven, E. (2022). Sürdürülebilir Gıda ve Tarımsal Atık Yönetimi. Çevre İklim Ve Sürdürülebilirlik, 23(2), 145-160.