Research Article
BibTex RIS Cite

Application of swat hydrological model to assess the impacts of land use change on sediment loads

Year 2022, , 108 - 120, 15.03.2022
https://doi.org/10.31015/jaefs.2022.1.15

Abstract

Controlling and reducing the watershed's erosion and sedimentation is essential to ensure the continuity of projects implemented to develop land and water resources and improve sustainability, performance, and longevity. Sediment control is also critical in managing the river basin in limiting the transport of solids, improving water quality, sustaining aquatic life, and preventing damage to downstream aquatic environments and ecosystems. Estimating the potential effects of land-use changes on surface runoff and soil erosion requires distributed hydrological modeling methods. In addition to naturally occurring sediments, changes in land-use types for different applications can be a primary cause for the increase in sediment rates in the watershed. This study used the Soil and Water Assessment Tool (SWAT), a rainfall-runoff model, to evaluate land use/cover changes (i.e., deforestation) and their impact on sediment load under different scenarios. For the baseline (no changes) scenario, the watershed is calibrated using the flow and sediment data measured from the rain gauge station during the time step to estimate the post-deforestation changes at the sub-catchment scale of the study area. The study results indicated that the total surface runoff and sediment yield for the selected sub-catchment in the deforestation scenario with the highest spatial distribution, due to the high erosivity (24% increase) of excessive surface runoff after deforestation, sediment yield increased 3.5-fold. In contrast, due to the removal of trees and vegetation's canopy, the evapotranspiration, leaf area index, and dissolved oxygen transported into reach showed the inverse ratios, and the values decreased by 5%, 24, and 17%, respectively, in compared with the baseline scenario. In terms of watershed management, therefore, the application of hydrological models such as SWAT rainfall-runoff and erosion models can be a helpful method for decision-makers to apply for the protection of forests from intensive impacts such as deforestation and limiting their socio-environmental effects.

Supporting Institution

Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa,

Project Number

FDK-2018-29656.

Thanks

The study was supported by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa, Project number FDK-2018-29656. The authors would like to thank the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa for their support. This study is part of the first author's Ph.D. thesis.

References

  • Abbaspour, K. C., Vejdani, M, and Haghighat, S. (2000). SWAT-CUP Calibration and Uncertainty Programs for SWAT. Transactions of the American Society of Agricultural Engineers, 43(5), 1596–1602. Doi: https://doi.org/10.13031/2013.3000
  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. Doi: https://doi.org/10.1016/j.jhydrol.2006.09.014
  • Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution, 7(7), 220–224. Doi: https://doi.org/10.1016/0169-5347(92)90048-G
  • Aksoy, E., Panagos, P., Montanarella, L., and Jones, A. (2010). Integration of the Soil Database of Turkey. In Earth. Doi: http://dx.doi.org/10.2788/77892
  • Aliye, A., Modibbo, N., Medugu, N., and Ayo, O. (2014). Impacts of Deforestation on Socio-Economic Development of Akwanga Nasarawa State. International Journal of Science, Environment and Technology, 3(2), 403–416. Retrieved from www.ijset.net
  • Amundson, R., Berhe, A., Hopmans, J., Olson, C., Sztein, A. E., and Sparks, D. (2015). Soil and human security in the 21st century. Science, 348(6235). Doi: https://doi.org/10.1126/science.1261071
  • Arnold, J., Allen, P., and Bernhardt, G. (1993). A comprehensive surface-groundwater flow model. Journal of Hydrology, 142(1–4), 47–69. Doi: https://doi.org/10.1016/0022-1694(93)90004-S
  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., and Griensven, A. Van. (2012). Swat: Model Use, Calibration, and Validation. 55(4), 1491–1508. Doi: http://dx.doi.org/10.13031/2013.42256
  • Atalay, I. (1986). Vegetation formations of Turkey. Travaux - Institut de Geographie de Reims, 65–66, 17–30. Doi: https://doi.org/10.3406/tigr.1986.1183
  • Avwunudiogba, A., and Hudson, P. F. (2014). A Review of Soil Erosion Models with Special Reference to the needs of Humid Tropical Mountainous Environments. European Journal of Sustainable Development, 3(4), 299–310. Doi: https://doi.org/10.14207/ejsd.2014.v3n4p299
  • Bettess, R., Fisher, K., Hardwick, M., Holmes, N., Mant, J., Sayers, P., Sear, D., and Thorne, C. (2011). Key Recommendations for Channel management (Issue Phase 2). Environment Agency, Bristol, UK. Retrieved from www.environment-agency.gov.uk
  • Bonan, G. B. (1999). Frost Followed the Plow: Impacts of Deforestation on the Climate of the United States. Ecological Applications, 9(4), 1305. Doi: https://doi.org/10.2307/2641398
  • Bredemeier, M. (2010). Forest, climate and water issues in Europe. Ecohydrology, 130(February), 126–130. Doi: https://doi.org/10.1002/eco
  • Brevik, E. C. (2006). Soil health and productivity. Soils, Plant Growth Crop Prod. Encyclopedia of Life Support Systems (EOLSS), I. Retrieved from https://www.eolss.net/sample-chapters/c10/E1-05A-04-00.pdf
  • Chrisphine, O., Maryanne, O., and Boitt, K. M. (2015). Assessment of Hydrological Impacts of Mau Forest, Kenya. Journal of Waste Water Treatment & Analysis, 07(01), 1–7. Doi: https://doi.org/10.4172/2157-7587.1000223
  • Citiroglu, H., Barut, I., and Zuran, A. (2011). Groundwater vulnerability assessment in the Loussi polje area, N Peloponessus: the PRESK method. In Advances in the Research of Aquatic Environment. Doi: https://doi.org/10.1007/978-3-642-24076-8_39
  • CLC. (2018). European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA), 1, 129. Retrieved from https://land.copernicus.eu/
  • Collins, A. L., and McGonigle, D. F. (2008). Monitoring and modelling diffuse pollution from agriculture for policy support: UK and European experience. Environmental Science and Policy, 11(2), 97–101. Doi: https://doi.org/10.1016/j.envsci.2008.01.001
  • Cullu, M. A., Gunal, H., Akca, E., and Kapur, S. (2018). Soil Geography. In Encyclopedia of Environmental Change (pp. 105–109). The Soils of Turkey. World Soils Book Series. Springer, Cham. Doi: https://doi.org/10.4135/9781446247501.n3605
  • De Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., and Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. Doi: https://doi.org/10.1016/j.earscirev.2013.08.014
  • Farley, K., Jobbágy, E., and Jackson, R. (2005). Effects of afforestation on water yield: A global synthesis with implications for policy. Global Change Biology, 11(10), 1565–1576. Doi: https://doi.org/10.1111/j.1365-2486.2005.01011.x
  • Gellis, A., Fitzpatrick, F., and Schubauer-Berigan, J. (2016). A Manual to Identify Sources of Fluvial Sediment. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R1(September), 106. Retrieved from https://nepis.epa.gov/Exe/ZyPDF.cgi/P100QVM1.PDF?Dockey=P100QVM1.PDF
  • Hargreaves, G. H., and Samani, Z. A. (1985). Reference Crop Evapotranspiration From Ambient Air Temperature. Applied Engineering in Agriculture. 1(2): 96-99. Doi: http://dx.doi.org/10.13031/2013.26773
  • Hassan, M. A., Roberge, L., Church, M., More, M., Donner, S. D., Leach, J., and Ali, K. F. (2017). What are the contemporary sources of sediment in the Mississippi River? Geophysical Research Letters, 44(17), 8919–8924. Doi: https://doi.org/10.1002/2017GL074046
  • Hughes, R., Kauffman, J., and Jarmaillo, V. (2000). Ecosystem-Scale Impacts of Deforestation and Land Use in a Humid Tropical Region of Mexico. Ecological Applications, 10(2), 515. Doi: https://doi.org/10.2307/2641111
  • Iwata, T., Nakano, S., and Inoue, M. (2003). Impacts of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecological Applications, 13(2), 461–473. Doi: https://doi.org/10.1890/1051-0761(2003)013[0461:IOPRDO]2.0.CO;2
  • Izquierdo, A. E., and Grau, H. R. (2009). Agriculture adjustment, land-use transition and protected areas in Northwestern Argentina. Journal of Environmental Management, 90(2), 858–865. Doi: https://doi.org/10.1016/j.jenvman.2008.02.013
  • Jenkins, A. P., Jupiter, S. D., Qauqau, I., and Atherton, J. (2007). The importance of ecosystem-based management for conserving aquatic migratory pathways on tropical high islands: a case study from Fiji. Aquatic Conservation: Marine and Freshwater Ecosystems, 656(October 2006), 636–656. Doi: https://doi.org/10.1002/aqc
  • Juárez-Orozco, S., Siebe, C., and Fernández, D. (2017). Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Tropical Conservation Science, 10. Doi: https://doi.org/10.1177/1940082917737207
  • Kük, M., and Burgess, P. (2010). The Pressures on, and the Responses to, the State of Soil and Water Resources of Turkey. Ankara Üniversitesi Çevrebilimleri Dergisi, March, 199–211. Doi: https://doi.org/10.1501/csaum_0000000036
  • Langdale, G. W., West, L. T., Bruce, R. R., Miller, W. P., & Thomas, A. W. (1992). Restoration of eroded soil with conservation tillage. Soil Technology, 5(1), 81–90. https://doi.org/10.1016/0933-3630(92)90009-P
  • Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S., and Wang, K. (2016). Potential and actual impacts of deforestation and afforestation on land surface temperature. Journal of Geophysical Research, 121(24), 14372–14386. Doi: https://doi.org/10.1002/2016JD024969
  • Maxwell, S. L., Fuller, R. A., Brooks, T. M., and Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536(7615), 143–145. https://doi.org/10.1038/536143a
  • Monteith, J. L. (1965). Evaporation and Environment. Symposia of the Society for Experimental Biology., 19, 205–234. Retrieved from https://repository.rothamsted.ac.uk/item/8v5v7
  • Moriasi, D. N., Arnold, J. G., M. W. Van Liew, R. L. Bingner, Harmel, R. D., and T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900. Retrieved from https://swat.tamu.edu/media/1312/moriasimodeleval.pdf
  • Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. Doi: https://doi.org/https://ui.adsabs.harvard.edu/link_gateway/1970JHyd...10..282N/doi:10.1016/0022-1694(70)90255-6
  • Neitsch, S., Arnold, J., Kiniry, J., and Williams, J. (2011). Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute, 1–647. Doi: https://doi.org/10.1016/j.scitotenv.2015.11.063
  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams., J. R. (2005). Soil and Water Assessment Tool User’s Manual Version 2005. Diffuse Pollution Conference Dublin, 494. Retrieved from http://swat.tamu.edu/media /1292/swat2005theory.pdf
  • Owens, P. N., Batalla, R. J., Collins, A. J., Gomez, B., Hicks, D. M., Horowitz, A. J., Kondolf, G. M., Marden, M., Page, M. J., Peacock, D. H., Petticrew, E. L., Salomons, W., & Trustrum, N. A. (2005). Fine-grained sediment in river systems: Environmental significance and management issues. River Research and Applications, 21(7), 693–717. Doi: https://doi.org/10.1002/rra.878
  • Pattanayak, S. K., and Wendland, K. J. (2007). Nature’s care: Diarrhea, watershed protection, and biodiversity conservation in Flores, Indonesia. Biodiversity and Conservation, 16(10), 2801–2819. Doi: https://doi.org/10.1007/s10531-007-9215-1
  • Pimentel, D., and Burgess, M. (2013). Soil erosion threatens food production. Agriculture (Switzerland), 3(3), 443–463. Doi: https://doi.org/10.3390/agriculture3030443
  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., and Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. Doi: https://doi.org/10.1126/science.267.5201.1117
  • Priestley, C. H. B., and Taylor, R. J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81–92. Doi: https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
  • Ritter, J. (2012). Wind Erosion - Causes and Effects. ProEnvironment/ProMediu, 12(38), 1–8. Retrieved from http://www.omafra.gov.on.ca/english/engineer/facts/12-053.htm
  • Rocha-Santos, L., Pessoa, M. S., Cassano, C. R., Talora, D. C., Orihuela, R. L. L., Mariano-Neto, E., Morante-Filho, J. C., Faria, D., & Cazetta, E. (2016). The shrinkage of a forest: Landscape-scale deforestation leading to overall changes in local forest structure. Biological Conservation, 196, 1–9. Doi: https://doi.org/10.1016/j.biocon.2016.01.028
  • Schüler, G. (2006). Identification of flood-generating forest areas and forestry measures for water retention. Forest Snow and Landscape Research, 80(1), 99–114. Retrieved from https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A15461
  • Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E., and Carrasco, L. R. (2018). Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nature Communications, 9(1). Doi: https://doi.org/10.1038/s41467-018-06579-2
  • USDA. (1972). USDA Soil Conservation Service. National Engineering Handbook Section 4 Hydrology, August, Chapters 4-10. Retrieved from https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=18389.wba
  • Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., and Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94(1–4), 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003
  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., and Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629–1633. Doi: https://doi.org/10.1126/science.1094875
  • Watson, R., Noble, R., Bolin, B., Ravindranath, N., Verardo, D., and Dokken, D. (2000). Land Use, Land-Use Change and Forestry (p. 20pp). Retrieved from https://archive.ipcc.ch/ipccreports/sres/land_use/index.php?idp=0
  • Wenger, A. S., Atkinson, S., Santini, T., Falinski, K., Hutley, N., Albert, S., Horning, N., Watson, J. E. M., Mumby, P. J., and Jupiter, S. D. (2018). Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands. Environmental Research Letters, 13(4). Doi: https://doi.org/10.1088/1748-9326/aab9eb
  • Wilk, J., Andersson, L., and Plermkamon, V. (2001). Hydrological impacts of forest conversion to agriculture in a large river basin in Northeast Thailand. Hydrological Processes, 15(14), 2729–2748. Doi: https://doi.org/10.1002/hyp.229
  • Williams, J., Karl G., and Bruce P. V. H. (1975). Use of the Modified Universal Soil Loss Equation for average annual sediment yield estimates on small rangeland drainage basins. Present and Prospective Technology for Predicting Sediment Yield and Sources. U.S. Dept. Agrie., pp 244-252. Retrieved from https://iahs.info/uploads/dms/6694.413-422-159-Jackson.pdf
  • WWF. (2017). Causes and effects of global forest fires. Retrieved from https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-Study-Forests-Ablaze.pdf
  • Yen, H., Ahmadi, M., White, M. J., Wang, X., and Arnold, J. G. (2014). C-SWAT: The Soil and Water Assessment Tool with consolidated input files in alleviating computational burden of recursive simulations. Computers and Geosciences, 72, 221–232. Doi: https://doi.org/10.1016/j.cageo.2014.07.017
Year 2022, , 108 - 120, 15.03.2022
https://doi.org/10.31015/jaefs.2022.1.15

Abstract

Project Number

FDK-2018-29656.

References

  • Abbaspour, K. C., Vejdani, M, and Haghighat, S. (2000). SWAT-CUP Calibration and Uncertainty Programs for SWAT. Transactions of the American Society of Agricultural Engineers, 43(5), 1596–1602. Doi: https://doi.org/10.13031/2013.3000
  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. Doi: https://doi.org/10.1016/j.jhydrol.2006.09.014
  • Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution, 7(7), 220–224. Doi: https://doi.org/10.1016/0169-5347(92)90048-G
  • Aksoy, E., Panagos, P., Montanarella, L., and Jones, A. (2010). Integration of the Soil Database of Turkey. In Earth. Doi: http://dx.doi.org/10.2788/77892
  • Aliye, A., Modibbo, N., Medugu, N., and Ayo, O. (2014). Impacts of Deforestation on Socio-Economic Development of Akwanga Nasarawa State. International Journal of Science, Environment and Technology, 3(2), 403–416. Retrieved from www.ijset.net
  • Amundson, R., Berhe, A., Hopmans, J., Olson, C., Sztein, A. E., and Sparks, D. (2015). Soil and human security in the 21st century. Science, 348(6235). Doi: https://doi.org/10.1126/science.1261071
  • Arnold, J., Allen, P., and Bernhardt, G. (1993). A comprehensive surface-groundwater flow model. Journal of Hydrology, 142(1–4), 47–69. Doi: https://doi.org/10.1016/0022-1694(93)90004-S
  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., and Griensven, A. Van. (2012). Swat: Model Use, Calibration, and Validation. 55(4), 1491–1508. Doi: http://dx.doi.org/10.13031/2013.42256
  • Atalay, I. (1986). Vegetation formations of Turkey. Travaux - Institut de Geographie de Reims, 65–66, 17–30. Doi: https://doi.org/10.3406/tigr.1986.1183
  • Avwunudiogba, A., and Hudson, P. F. (2014). A Review of Soil Erosion Models with Special Reference to the needs of Humid Tropical Mountainous Environments. European Journal of Sustainable Development, 3(4), 299–310. Doi: https://doi.org/10.14207/ejsd.2014.v3n4p299
  • Bettess, R., Fisher, K., Hardwick, M., Holmes, N., Mant, J., Sayers, P., Sear, D., and Thorne, C. (2011). Key Recommendations for Channel management (Issue Phase 2). Environment Agency, Bristol, UK. Retrieved from www.environment-agency.gov.uk
  • Bonan, G. B. (1999). Frost Followed the Plow: Impacts of Deforestation on the Climate of the United States. Ecological Applications, 9(4), 1305. Doi: https://doi.org/10.2307/2641398
  • Bredemeier, M. (2010). Forest, climate and water issues in Europe. Ecohydrology, 130(February), 126–130. Doi: https://doi.org/10.1002/eco
  • Brevik, E. C. (2006). Soil health and productivity. Soils, Plant Growth Crop Prod. Encyclopedia of Life Support Systems (EOLSS), I. Retrieved from https://www.eolss.net/sample-chapters/c10/E1-05A-04-00.pdf
  • Chrisphine, O., Maryanne, O., and Boitt, K. M. (2015). Assessment of Hydrological Impacts of Mau Forest, Kenya. Journal of Waste Water Treatment & Analysis, 07(01), 1–7. Doi: https://doi.org/10.4172/2157-7587.1000223
  • Citiroglu, H., Barut, I., and Zuran, A. (2011). Groundwater vulnerability assessment in the Loussi polje area, N Peloponessus: the PRESK method. In Advances in the Research of Aquatic Environment. Doi: https://doi.org/10.1007/978-3-642-24076-8_39
  • CLC. (2018). European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA), 1, 129. Retrieved from https://land.copernicus.eu/
  • Collins, A. L., and McGonigle, D. F. (2008). Monitoring and modelling diffuse pollution from agriculture for policy support: UK and European experience. Environmental Science and Policy, 11(2), 97–101. Doi: https://doi.org/10.1016/j.envsci.2008.01.001
  • Cullu, M. A., Gunal, H., Akca, E., and Kapur, S. (2018). Soil Geography. In Encyclopedia of Environmental Change (pp. 105–109). The Soils of Turkey. World Soils Book Series. Springer, Cham. Doi: https://doi.org/10.4135/9781446247501.n3605
  • De Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., and Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. Doi: https://doi.org/10.1016/j.earscirev.2013.08.014
  • Farley, K., Jobbágy, E., and Jackson, R. (2005). Effects of afforestation on water yield: A global synthesis with implications for policy. Global Change Biology, 11(10), 1565–1576. Doi: https://doi.org/10.1111/j.1365-2486.2005.01011.x
  • Gellis, A., Fitzpatrick, F., and Schubauer-Berigan, J. (2016). A Manual to Identify Sources of Fluvial Sediment. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R1(September), 106. Retrieved from https://nepis.epa.gov/Exe/ZyPDF.cgi/P100QVM1.PDF?Dockey=P100QVM1.PDF
  • Hargreaves, G. H., and Samani, Z. A. (1985). Reference Crop Evapotranspiration From Ambient Air Temperature. Applied Engineering in Agriculture. 1(2): 96-99. Doi: http://dx.doi.org/10.13031/2013.26773
  • Hassan, M. A., Roberge, L., Church, M., More, M., Donner, S. D., Leach, J., and Ali, K. F. (2017). What are the contemporary sources of sediment in the Mississippi River? Geophysical Research Letters, 44(17), 8919–8924. Doi: https://doi.org/10.1002/2017GL074046
  • Hughes, R., Kauffman, J., and Jarmaillo, V. (2000). Ecosystem-Scale Impacts of Deforestation and Land Use in a Humid Tropical Region of Mexico. Ecological Applications, 10(2), 515. Doi: https://doi.org/10.2307/2641111
  • Iwata, T., Nakano, S., and Inoue, M. (2003). Impacts of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecological Applications, 13(2), 461–473. Doi: https://doi.org/10.1890/1051-0761(2003)013[0461:IOPRDO]2.0.CO;2
  • Izquierdo, A. E., and Grau, H. R. (2009). Agriculture adjustment, land-use transition and protected areas in Northwestern Argentina. Journal of Environmental Management, 90(2), 858–865. Doi: https://doi.org/10.1016/j.jenvman.2008.02.013
  • Jenkins, A. P., Jupiter, S. D., Qauqau, I., and Atherton, J. (2007). The importance of ecosystem-based management for conserving aquatic migratory pathways on tropical high islands: a case study from Fiji. Aquatic Conservation: Marine and Freshwater Ecosystems, 656(October 2006), 636–656. Doi: https://doi.org/10.1002/aqc
  • Juárez-Orozco, S., Siebe, C., and Fernández, D. (2017). Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Tropical Conservation Science, 10. Doi: https://doi.org/10.1177/1940082917737207
  • Kük, M., and Burgess, P. (2010). The Pressures on, and the Responses to, the State of Soil and Water Resources of Turkey. Ankara Üniversitesi Çevrebilimleri Dergisi, March, 199–211. Doi: https://doi.org/10.1501/csaum_0000000036
  • Langdale, G. W., West, L. T., Bruce, R. R., Miller, W. P., & Thomas, A. W. (1992). Restoration of eroded soil with conservation tillage. Soil Technology, 5(1), 81–90. https://doi.org/10.1016/0933-3630(92)90009-P
  • Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S., and Wang, K. (2016). Potential and actual impacts of deforestation and afforestation on land surface temperature. Journal of Geophysical Research, 121(24), 14372–14386. Doi: https://doi.org/10.1002/2016JD024969
  • Maxwell, S. L., Fuller, R. A., Brooks, T. M., and Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536(7615), 143–145. https://doi.org/10.1038/536143a
  • Monteith, J. L. (1965). Evaporation and Environment. Symposia of the Society for Experimental Biology., 19, 205–234. Retrieved from https://repository.rothamsted.ac.uk/item/8v5v7
  • Moriasi, D. N., Arnold, J. G., M. W. Van Liew, R. L. Bingner, Harmel, R. D., and T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900. Retrieved from https://swat.tamu.edu/media/1312/moriasimodeleval.pdf
  • Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. Doi: https://doi.org/https://ui.adsabs.harvard.edu/link_gateway/1970JHyd...10..282N/doi:10.1016/0022-1694(70)90255-6
  • Neitsch, S., Arnold, J., Kiniry, J., and Williams, J. (2011). Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute, 1–647. Doi: https://doi.org/10.1016/j.scitotenv.2015.11.063
  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams., J. R. (2005). Soil and Water Assessment Tool User’s Manual Version 2005. Diffuse Pollution Conference Dublin, 494. Retrieved from http://swat.tamu.edu/media /1292/swat2005theory.pdf
  • Owens, P. N., Batalla, R. J., Collins, A. J., Gomez, B., Hicks, D. M., Horowitz, A. J., Kondolf, G. M., Marden, M., Page, M. J., Peacock, D. H., Petticrew, E. L., Salomons, W., & Trustrum, N. A. (2005). Fine-grained sediment in river systems: Environmental significance and management issues. River Research and Applications, 21(7), 693–717. Doi: https://doi.org/10.1002/rra.878
  • Pattanayak, S. K., and Wendland, K. J. (2007). Nature’s care: Diarrhea, watershed protection, and biodiversity conservation in Flores, Indonesia. Biodiversity and Conservation, 16(10), 2801–2819. Doi: https://doi.org/10.1007/s10531-007-9215-1
  • Pimentel, D., and Burgess, M. (2013). Soil erosion threatens food production. Agriculture (Switzerland), 3(3), 443–463. Doi: https://doi.org/10.3390/agriculture3030443
  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., and Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. Doi: https://doi.org/10.1126/science.267.5201.1117
  • Priestley, C. H. B., and Taylor, R. J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81–92. Doi: https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
  • Ritter, J. (2012). Wind Erosion - Causes and Effects. ProEnvironment/ProMediu, 12(38), 1–8. Retrieved from http://www.omafra.gov.on.ca/english/engineer/facts/12-053.htm
  • Rocha-Santos, L., Pessoa, M. S., Cassano, C. R., Talora, D. C., Orihuela, R. L. L., Mariano-Neto, E., Morante-Filho, J. C., Faria, D., & Cazetta, E. (2016). The shrinkage of a forest: Landscape-scale deforestation leading to overall changes in local forest structure. Biological Conservation, 196, 1–9. Doi: https://doi.org/10.1016/j.biocon.2016.01.028
  • Schüler, G. (2006). Identification of flood-generating forest areas and forestry measures for water retention. Forest Snow and Landscape Research, 80(1), 99–114. Retrieved from https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A15461
  • Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E., and Carrasco, L. R. (2018). Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nature Communications, 9(1). Doi: https://doi.org/10.1038/s41467-018-06579-2
  • USDA. (1972). USDA Soil Conservation Service. National Engineering Handbook Section 4 Hydrology, August, Chapters 4-10. Retrieved from https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=18389.wba
  • Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., and Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94(1–4), 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003
  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., and Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629–1633. Doi: https://doi.org/10.1126/science.1094875
  • Watson, R., Noble, R., Bolin, B., Ravindranath, N., Verardo, D., and Dokken, D. (2000). Land Use, Land-Use Change and Forestry (p. 20pp). Retrieved from https://archive.ipcc.ch/ipccreports/sres/land_use/index.php?idp=0
  • Wenger, A. S., Atkinson, S., Santini, T., Falinski, K., Hutley, N., Albert, S., Horning, N., Watson, J. E. M., Mumby, P. J., and Jupiter, S. D. (2018). Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands. Environmental Research Letters, 13(4). Doi: https://doi.org/10.1088/1748-9326/aab9eb
  • Wilk, J., Andersson, L., and Plermkamon, V. (2001). Hydrological impacts of forest conversion to agriculture in a large river basin in Northeast Thailand. Hydrological Processes, 15(14), 2729–2748. Doi: https://doi.org/10.1002/hyp.229
  • Williams, J., Karl G., and Bruce P. V. H. (1975). Use of the Modified Universal Soil Loss Equation for average annual sediment yield estimates on small rangeland drainage basins. Present and Prospective Technology for Predicting Sediment Yield and Sources. U.S. Dept. Agrie., pp 244-252. Retrieved from https://iahs.info/uploads/dms/6694.413-422-159-Jackson.pdf
  • WWF. (2017). Causes and effects of global forest fires. Retrieved from https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-Study-Forests-Ablaze.pdf
  • Yen, H., Ahmadi, M., White, M. J., Wang, X., and Arnold, J. G. (2014). C-SWAT: The Soil and Water Assessment Tool with consolidated input files in alleviating computational burden of recursive simulations. Computers and Geosciences, 72, 221–232. Doi: https://doi.org/10.1016/j.cageo.2014.07.017
There are 56 citations in total.

Details

Primary Language English
Subjects Water Resources and Water Structures
Journal Section Research Articles
Authors

Rouhollah Nasirzadehdizaji 0000-0003-1913-890X

Dilek Eren Akyüz 0000-0003-4509-6897

Project Number FDK-2018-29656.
Publication Date March 15, 2022
Submission Date January 2, 2022
Acceptance Date March 6, 2022
Published in Issue Year 2022

Cite

APA Nasirzadehdizaji, R., & Akyüz, D. E. (2022). Application of swat hydrological model to assess the impacts of land use change on sediment loads. International Journal of Agriculture Environment and Food Sciences, 6(1), 108-120. https://doi.org/10.31015/jaefs.2022.1.15

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27