Research Article
BibTex RIS Cite
Year 2022, , 426 - 434, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.12

Abstract

References

  • Abdullah, E., ve Baran, M. F. (2019). Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 6(2), 165-173, (in Turkish). DOI: https://doi.org/doi.org/10.19159/tutad.493006
  • Acay, H., Baran, M.F., Eren, A.(2019). Investigating Antimicrobial Activity Of Silver Nanoparticles Produced Through Green Synthesis Using Leaf Extract Of Common Grape (Vitis Vinifera). Applied Ecology and Environmental Research, 17(2), 4539-4546. DOI: http://dx.doi.org/10.15666/aeer/1702_45394546
  • Acay, H., Baran, M.F. (2019). Antimicrobial Activity of Silver Nanoparticles Synthesized with Extract of Tomato plant Against Bacterial and Fungal Pathogens. Middle Black Sea Journal of Health Science. 5(2):67-73, DOI: https://doi.org/10.19127/mbsjohs.551132
  • Ahmed, M., Ji, M., Qin, P., Gu, Z., Liu, Y., Sikandar, A., . . . Javeed, A. (2019). Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis sativa L. Appl. Ecol. Environ. Res, 17, 6961-6979. DOI: http://dx.doi.org/10.15666/aeer/1703_69616979
  • Aktepe, N. (2021). Gümüş nano materyallerin sentezi, karakterizasyonu ve antimikrobiyal aktiviteleri. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(2), 347-354. DOI: https://doi.org/10.24012/dumf.889403 (in Turkish)
  • Aktepe, N., and Baran, A. (2021b). Fast and Low-Cost Biosynthesis of AgNPs with Almond Leaves: Medical Applications with Biocompatible Structures. Progress in Nutrition, 23(3), e2021271. DOI https://doi.org/10.23751/pn.v23i3.11996
  • Aktepe, N., and Baran, A. (2021a). Biosynthesis of AgNPs by extract from waste leaves of Citrullus lanatus sp. (watermelon); characterization, antibacterial and antifungal effects. Progress in Nutrition, 23(3), e2021243. DOI https://doi.org/10.23751/pn.v23i3.11907
  • Aktepe, N., Baran, A., Atalar, M.N., Baran, M.F., Keskin, C., Düz, M.Z., Yavuz, Ö., İrtegun, S., Kavak, D.E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 6(3), 685–700.DOI: https://doi.org/10.52520/masjaps.120
  • Ali, S. G., Ansari, M. A., Khan, H. M., Jalal, M., Mahdi, A. A., & Cameotra, S. S. (2018). Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against imipenem resistant clinical isolates of P. aeruginosa. BioNanoScience, 8(2), 544-553. DOI: https://doi.org/10.1007/s12668-018-0505-8
  • Baran, A., Keskin, C., Baran, M. F., Huseynova, I., Khalilov, R., Eftekhari, A., . . . Kavak, D. E. (2021). Ecofriendly synthesis of silver nanoparticles using ananas comosus fruit peels: anticancer and antimicrobial activities. Bioinorganic Chemistry and Applications, 2021. DOI: https://doi.org/10.1155/2021/2058149
  • Baran, A., ve Yeşilada, Ö. (2022). Antimicrobial Potential of Silver Nanoparticles Produced By Apricot Leaf Extract. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 10(1), 50-57. https://doi.org/10.33715/inonusaglik.1012011
  • Baran, M.F. (2019). Synthesis, characterization and investigation of antimicrobial activity of silver nanoparticles from Cydonia oblonga leaf. Applied Ecology and Environmental Research, 17(2), 2583-2592. DOI:http://dx.doi.org/10.15666/aeer/1702_25832592
  • Baran, M.F., Saydut, A. (2019). Gümüş nanomalzeme sentezi ve antimikrobiyal uygulamaları. DÜMF Mühendislik Dergisi 10:2 (2019) : 689-695, DOI: https://doi.org/10.24012/dumf.504331
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564-582. DOI: https://doi.org/10.1128/cmr.12.4.564
  • Ebrahimzadeh, M. A., Naghizadeh, A., Amiri, O., Shirzadi-Ahodashti, M., & Mortazavi-Derazkola, S. (2020). Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorganic chemistry, 94, 103425. DOI: https://doi.org/10.1016/j.bioorg.2019.103425
  • Ghosh, A., Das, B. K., Roy, A., Mandal, B., & Chandra, G. (2008). Antibacterial activity of some medicinal plant extracts. J Nat Med, 62(2), 259-262. https://doi.org/10.1007/s11418-007-0216-x
  • Ishak, N. M., Kamarudin, S., & Timmiati, S. (2019). Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Materials Research Express, 6(11), 112004. DOI: https://doi.org/10.1155/2022/5474645
  • Kaya, A., Başer, K. H., Satil, F., & Tümen, G. (2000). Morphological and anatomical studies on Cyclotrichium origanifolium (Labill.) Manden. & Scheng.(Labiatae). Turkish Journal of Botany, 24(5), 273-278. Retrieved from https://hdl.handle.net/20.500.12462/9841
  • Keskin, D., & Güvensen, N. (2022). Investigation of antimicrobial properties and chemical composition of different extracts of Sweet gum leaves (Liquidambar orientalis). International Journal of Agriculture Environment and Food Sciences, 6(1), 13-18.
  • Longhi, C., Santos, J. P., Morey, A. T., Marcato, P. D., Duran, N., Pinge-Filho, P., .Yamauchi, L. M. (2015). Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Sabouraudia, 54(4), 428-432. DOI: https://doi.org/10.1093/mmy/myv036
  • Mohammed, A. E. (2015). Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pacific Journal of Tropical Biomedicine, 5(5), 382-386. DOI: https://doi.org/10.1016/S2221-1691(15)30373-7
  • Nguyen, N. H., Nhi, T. T. Y., Van Nhi, N. T., Cuc, T. T. T., Tuan, P. M., & Nguyen, D. H. (2021). Comparative Study of the Silver Nanoparticle Synthesis Ability and Antibacterial Activity of the Piper Betle L. and Piper Sarmentosum Roxb. Extracts. Journal of Nanomaterials, 2021. DOI: https://doi.org/10.1155/2021/5518389
  • Pallela, P. N. V. K., Ummey, S., Ruddaraju, L. K., Pammi, S., & Yoon, S.-G. (2018). Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124, 63-69. DOI: https://doi.org/10.1016/j.micpath.2018.08.0266
  • Paul, S., Mohanram, K., & Kannan, I. (2018). Antifungal activity of curcumin-silver nanoparticles against fluconazole-resistant clinical isolates of Candida species. Ayu, 39(3), 182. DOI: https://doi.org/10.4103/ayu.ayu_24_18
  • Pugazhendhi, S., Palanisamy, P., & Jayavel, R. (2018). Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Optical Materials, 79, 457-463. DOI: https://doi.org/10.1016/j.optmat.2018
  • Ranjbar, R., Bagheri, H., Ghasemi, F., Guest, P. C., & Sahebkar, A. (2021). Effects of curcumin and Its analogues on infectious diseases. Studies on Biomarkers and New Targets in Aging Research in Iran, 75-101. DOI: 10.1007/978-3-030-56153-6_5
  • Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biological Trace Element Research, 199(1), 344-370. DOI: https://doi.org/10.1155/2021/9830644
  • Tripathi, D., & Pandey-Rai, S. (2021). Impacts of green synthesized silver nanoparticles with natural bioactive compounds on plant’s developmental behavior. In Natural Bioactive Compounds (pp. 435-452). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-820655-3.00022-7
  • Umaz, A., Koç, A., Baran, M. F., Keskin, C., Atalar, M. N. (2019). Hypericum Triquetrifolium Turra Bitkisinden Gümüş Nanopartiküllerin Sentezi, Karekterizasyonu ve Antimikrobial Etkinliğinin İncelenmesi. Journal of the Institute of Science and Technology, 9(3), 1467-1475. DOI: https://doi.org/10.21597/jist.533115 (in Turkish)
  • Wypij, M., Czarnecka, J., Świecimska, M., Dahm, H., Rai, M., & Golinska, P. (2018). Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World Journal of Microbiology and Biotechnology, 34(2), 1-13. DOI: https://doi.org/10.1007/s11274-017-2406-3
  • Zhou, L., Zhao, X., Li, M., Lu, Y., Ai, C., Jiang, C., . . . Shi, J. (2021). Antifungal activity of silver nanoparticles synthesized by iturin against Candida albicans in vitro and in vivo. Applied Microbiology and Biotechnology, 105(9), 3759-3770. DOI: https://doi.org/10.1007/s00253-021-11296-w

Synthesis, characterization, and evaluation of the antimicrobial activities of silver nanoparticles from Cyclotrichium origanifolium L.

Year 2022, , 426 - 434, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.12

Abstract

Cyclotricium origanifolium is a plant belonging to the Lamiaceae family and is a species that grows in the Western and Southern Anatolian regions of Turkey. In our study, the antimicrobial activities of silver nanoparticles (AgNP) were investigated through Cyclotricium origanifolium plant extract. Characterization processes of the obtained AgNPs, suitable spectral analysis methods; Uv-Vis was determined by FT-IR, SEM-EDX, XRD. According to the results of the analysis, it was determined that the AgNPs were spherical in shape and had an average diameter of 17.60 nm. The antimicrobial effect of AgNPs was determined by the minimum inhibition concentration (MIC) method. Gram positive as test microorganisms; Staphylococcus aureus, Bacillus subtilis and gram negative; Escherichia coli, Pseudomonas aeruginosa bacteria, and Candida albicans fungal pathogen species were used. The suppression of microorganism growth was investigated by comparing the efficacy of standard antibiotics used in our study with AgNPs produced by the green synthesis method. It has been observed that the obtained AgNPs have a very strong effect on gram-positive B. subtilis and gram-negative E. coli bacteria, and are more effective against C. albicans than the normal antifungal drug. It was determined that the antimicrobial activity of AgNPs produced from C. origanifolium L. plants showed a stronger effect than standard antibiotics.

References

  • Abdullah, E., ve Baran, M. F. (2019). Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 6(2), 165-173, (in Turkish). DOI: https://doi.org/doi.org/10.19159/tutad.493006
  • Acay, H., Baran, M.F., Eren, A.(2019). Investigating Antimicrobial Activity Of Silver Nanoparticles Produced Through Green Synthesis Using Leaf Extract Of Common Grape (Vitis Vinifera). Applied Ecology and Environmental Research, 17(2), 4539-4546. DOI: http://dx.doi.org/10.15666/aeer/1702_45394546
  • Acay, H., Baran, M.F. (2019). Antimicrobial Activity of Silver Nanoparticles Synthesized with Extract of Tomato plant Against Bacterial and Fungal Pathogens. Middle Black Sea Journal of Health Science. 5(2):67-73, DOI: https://doi.org/10.19127/mbsjohs.551132
  • Ahmed, M., Ji, M., Qin, P., Gu, Z., Liu, Y., Sikandar, A., . . . Javeed, A. (2019). Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis sativa L. Appl. Ecol. Environ. Res, 17, 6961-6979. DOI: http://dx.doi.org/10.15666/aeer/1703_69616979
  • Aktepe, N. (2021). Gümüş nano materyallerin sentezi, karakterizasyonu ve antimikrobiyal aktiviteleri. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(2), 347-354. DOI: https://doi.org/10.24012/dumf.889403 (in Turkish)
  • Aktepe, N., and Baran, A. (2021b). Fast and Low-Cost Biosynthesis of AgNPs with Almond Leaves: Medical Applications with Biocompatible Structures. Progress in Nutrition, 23(3), e2021271. DOI https://doi.org/10.23751/pn.v23i3.11996
  • Aktepe, N., and Baran, A. (2021a). Biosynthesis of AgNPs by extract from waste leaves of Citrullus lanatus sp. (watermelon); characterization, antibacterial and antifungal effects. Progress in Nutrition, 23(3), e2021243. DOI https://doi.org/10.23751/pn.v23i3.11907
  • Aktepe, N., Baran, A., Atalar, M.N., Baran, M.F., Keskin, C., Düz, M.Z., Yavuz, Ö., İrtegun, S., Kavak, D.E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 6(3), 685–700.DOI: https://doi.org/10.52520/masjaps.120
  • Ali, S. G., Ansari, M. A., Khan, H. M., Jalal, M., Mahdi, A. A., & Cameotra, S. S. (2018). Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against imipenem resistant clinical isolates of P. aeruginosa. BioNanoScience, 8(2), 544-553. DOI: https://doi.org/10.1007/s12668-018-0505-8
  • Baran, A., Keskin, C., Baran, M. F., Huseynova, I., Khalilov, R., Eftekhari, A., . . . Kavak, D. E. (2021). Ecofriendly synthesis of silver nanoparticles using ananas comosus fruit peels: anticancer and antimicrobial activities. Bioinorganic Chemistry and Applications, 2021. DOI: https://doi.org/10.1155/2021/2058149
  • Baran, A., ve Yeşilada, Ö. (2022). Antimicrobial Potential of Silver Nanoparticles Produced By Apricot Leaf Extract. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 10(1), 50-57. https://doi.org/10.33715/inonusaglik.1012011
  • Baran, M.F. (2019). Synthesis, characterization and investigation of antimicrobial activity of silver nanoparticles from Cydonia oblonga leaf. Applied Ecology and Environmental Research, 17(2), 2583-2592. DOI:http://dx.doi.org/10.15666/aeer/1702_25832592
  • Baran, M.F., Saydut, A. (2019). Gümüş nanomalzeme sentezi ve antimikrobiyal uygulamaları. DÜMF Mühendislik Dergisi 10:2 (2019) : 689-695, DOI: https://doi.org/10.24012/dumf.504331
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564-582. DOI: https://doi.org/10.1128/cmr.12.4.564
  • Ebrahimzadeh, M. A., Naghizadeh, A., Amiri, O., Shirzadi-Ahodashti, M., & Mortazavi-Derazkola, S. (2020). Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorganic chemistry, 94, 103425. DOI: https://doi.org/10.1016/j.bioorg.2019.103425
  • Ghosh, A., Das, B. K., Roy, A., Mandal, B., & Chandra, G. (2008). Antibacterial activity of some medicinal plant extracts. J Nat Med, 62(2), 259-262. https://doi.org/10.1007/s11418-007-0216-x
  • Ishak, N. M., Kamarudin, S., & Timmiati, S. (2019). Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Materials Research Express, 6(11), 112004. DOI: https://doi.org/10.1155/2022/5474645
  • Kaya, A., Başer, K. H., Satil, F., & Tümen, G. (2000). Morphological and anatomical studies on Cyclotrichium origanifolium (Labill.) Manden. & Scheng.(Labiatae). Turkish Journal of Botany, 24(5), 273-278. Retrieved from https://hdl.handle.net/20.500.12462/9841
  • Keskin, D., & Güvensen, N. (2022). Investigation of antimicrobial properties and chemical composition of different extracts of Sweet gum leaves (Liquidambar orientalis). International Journal of Agriculture Environment and Food Sciences, 6(1), 13-18.
  • Longhi, C., Santos, J. P., Morey, A. T., Marcato, P. D., Duran, N., Pinge-Filho, P., .Yamauchi, L. M. (2015). Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Sabouraudia, 54(4), 428-432. DOI: https://doi.org/10.1093/mmy/myv036
  • Mohammed, A. E. (2015). Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pacific Journal of Tropical Biomedicine, 5(5), 382-386. DOI: https://doi.org/10.1016/S2221-1691(15)30373-7
  • Nguyen, N. H., Nhi, T. T. Y., Van Nhi, N. T., Cuc, T. T. T., Tuan, P. M., & Nguyen, D. H. (2021). Comparative Study of the Silver Nanoparticle Synthesis Ability and Antibacterial Activity of the Piper Betle L. and Piper Sarmentosum Roxb. Extracts. Journal of Nanomaterials, 2021. DOI: https://doi.org/10.1155/2021/5518389
  • Pallela, P. N. V. K., Ummey, S., Ruddaraju, L. K., Pammi, S., & Yoon, S.-G. (2018). Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124, 63-69. DOI: https://doi.org/10.1016/j.micpath.2018.08.0266
  • Paul, S., Mohanram, K., & Kannan, I. (2018). Antifungal activity of curcumin-silver nanoparticles against fluconazole-resistant clinical isolates of Candida species. Ayu, 39(3), 182. DOI: https://doi.org/10.4103/ayu.ayu_24_18
  • Pugazhendhi, S., Palanisamy, P., & Jayavel, R. (2018). Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Optical Materials, 79, 457-463. DOI: https://doi.org/10.1016/j.optmat.2018
  • Ranjbar, R., Bagheri, H., Ghasemi, F., Guest, P. C., & Sahebkar, A. (2021). Effects of curcumin and Its analogues on infectious diseases. Studies on Biomarkers and New Targets in Aging Research in Iran, 75-101. DOI: 10.1007/978-3-030-56153-6_5
  • Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biological Trace Element Research, 199(1), 344-370. DOI: https://doi.org/10.1155/2021/9830644
  • Tripathi, D., & Pandey-Rai, S. (2021). Impacts of green synthesized silver nanoparticles with natural bioactive compounds on plant’s developmental behavior. In Natural Bioactive Compounds (pp. 435-452). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-820655-3.00022-7
  • Umaz, A., Koç, A., Baran, M. F., Keskin, C., Atalar, M. N. (2019). Hypericum Triquetrifolium Turra Bitkisinden Gümüş Nanopartiküllerin Sentezi, Karekterizasyonu ve Antimikrobial Etkinliğinin İncelenmesi. Journal of the Institute of Science and Technology, 9(3), 1467-1475. DOI: https://doi.org/10.21597/jist.533115 (in Turkish)
  • Wypij, M., Czarnecka, J., Świecimska, M., Dahm, H., Rai, M., & Golinska, P. (2018). Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World Journal of Microbiology and Biotechnology, 34(2), 1-13. DOI: https://doi.org/10.1007/s11274-017-2406-3
  • Zhou, L., Zhao, X., Li, M., Lu, Y., Ai, C., Jiang, C., . . . Shi, J. (2021). Antifungal activity of silver nanoparticles synthesized by iturin against Candida albicans in vitro and in vivo. Applied Microbiology and Biotechnology, 105(9), 3759-3770. DOI: https://doi.org/10.1007/s00253-021-11296-w
There are 31 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Necmettin Aktepe 0000-0003-2192-9049

Nazım Erbay 0000-0002-2937-4220

Ayşe Baran 0000-0002-2317-0489

M.firat Baran 0000-0001-8133-6670

Cumali Keskin 0000-0003-3758-0654

Publication Date September 23, 2022
Submission Date June 5, 2022
Acceptance Date July 28, 2022
Published in Issue Year 2022

Cite

APA Aktepe, N., Erbay, N., Baran, A., Baran, M., et al. (2022). Synthesis, characterization, and evaluation of the antimicrobial activities of silver nanoparticles from Cyclotrichium origanifolium L. International Journal of Agriculture Environment and Food Sciences, 6(3), 426-434. https://doi.org/10.31015/jaefs.2022.3.12


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27