Research Article
BibTex RIS Cite
Year 2022, , 457 - 470, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.16

Abstract

Supporting Institution

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü TAGEM

Project Number

TAGEM/BBAD/16/A08/P04/01

References

  • Akturk, B., Uzun, H. (2019). Bazı sofralık üzüm çeşitlerinin Antalya’daki değişik yörelere uygunlukları ve etkili sıcaklık toplamı istekleri. Mediterr. Agric. Sci., 32(3):267-273. (in Turkish). DOI: https://doi.org/10.29136/mediterranean.520365
  • Atak, A., Akkurt, M., Polat, Z., Celik, H., Kahraman, K.A., Akgul, D.S., Özer, N., Soylemezoglu, G., Sire, G.G., Eibach, R. (2017). Susceptibility to downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necator) of different Vitis cultivars and genotypes. Cienc. e Tec. Vitivinic., 32(1):23-32. DOI: https://doi.org/10.1051/ctv/20173201023
  • Atak, A., Kahraman, K.A. (2012). Breeding studies and new table grapes in Turkey, 2012. E3 J Agric. Res. Develop., 2(3):80-85.
  • Atalay, İ., Mortan, K. (2006). Türkiye Bölgesel Coğrafyası (Regional Geography of Turkey)., İstanbul: İnkilap Kitabevi. (in Turkish).
  • Badr, G., Hoogenboom, G., Abouali, M., Moyer, M., Keller, M. (2018). Analysis of several bioclimatic indices for viticultural zoning in the Pacific northwest. Clim. Res., 76, 203–223. DOI: https://doi.org/10.3354/cr01532
  • Bahar, E., Korkutal, İ., Boz, Y. Tekirdağ ili Şarköy ilçesinin terroir açısından değerlendirilmesi. Şarköy Değerleri Sempozyumu, 14 October 2010. (in Turkish).
  • Blanco-Ward, D., Queijeiro, J.G., Jones, G.V. (2007). Spatial climate variability and viticulture in the Miño River Valley of Spain., Vitis., 46(2), 63-70. DOI: https://doi.org/10.5073/vitis.2007.46.63-70
  • Blouin J, Guimberteau G. (2000). Maturation et Maturite des Raisins., Feret, Bordeaux, ISBN: 2-902416-49-0.
  • Branas, J. (1974). Viticulture., Imp. Déhan., Montpellier.
  • Branas, J., Bernon, G., Levadoux, L. (1946). Eléments de Viticultura Générale. Imp. Déhan. Bordeaux.
  • Cadle-Davidson, L., Chicoine, D.R., Consolie, N.H. (2011). Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis., 95:202-211. DOI: https://doi.org/10.1094/PDIS-02-10-0092
  • Caffarra, A., Rinaldi, M., Eccel, E., Rossi, V., Pertot, I. (2021). Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agr. Ecosyst. Environ., 148:89-101. DOI: https://doi.org/10.1016/j.agee.2011.11.017
  • Caffi, T., Rossi, V., Leger, S.E., Bugiani, R. A. (2011). mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathol., 60, 522–531. DOI: https://doi.org/10.1111/j.1365-3059.2010.02395.x
  • Calonnec, A., Cartolaro, P., Poupot, C., Dubourdieu, D., Darriet, P. (2004). Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera L.) and wine. Plant Pathol., 53, 434–445. DOI: https://doi.org/10.1111/j.0032-0862.2004.01016.x
  • Carroll, J., Wilcox, W. (2003). Effects of humidity on the development of grapevine powdery mildew. Phytopathology, 93, 1137–1144. DOI: https://doi.org/10.1094/PHYTO.2003.93.9.1137
  • Chakraborty, S., Tiedermann, A.V., Teng, P.S. (2000). Climate change: potential impact on plant diseases. Env. Poll., 108, 317–326. DOI: https://doi.org/10.1016/S0269-7491(99)00210-9
  • Chen, M., Brun, F., Raynal, M., Makowski, D. (2020). Forecasting severe grape downy mildew attacks using machine learning. PLoS On., 15(3): e0230254. DOI: https://doi.org/10.1371/journal. pone.0230254
  • Cogato, A., Meggio, F., Pirotti, F., Cristante, A., Marinello, F. (2019). Analysis and impact of recent climate trends on grape composition in north-east Italy. BIO Web. Conf., 13.
  • Coombe, B.G. (1987). Influence of Temperature on Composition and Quality of Grapes. Acta Hortic, 206, 23-35.
  • Erinç, S. (1962). Klimatoloji ve Metodları Bölüm XI. Türkiye’nin İklim Şartları İst. Üniv. Coğrafya Enstitüsü Neşriyatı, No. 35, s. 366, İstanbul. (in Turkish).
  • FAOSTAT (2021). (Food and Agriculture Organization of the United Nations) Statistics database, Available online: http://www.fao.org/faostat/en/#data , Accessed 12nd August 2021
  • Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Santos, J.A. (2013). Future scenarios for viticultural zoning in Europe: Ensemble projections and uncertainties. Int. J. Biometeorol. 57(6), 909-925 DOI: https://doi.org/10.1007/s00484-012-0617-8
  • Fregoni, M. L., Schuster, D., Paoletti, A. (2003). ’indice bioclimatico di qualitá Fregoni. Terroir Zonazione Viticoltura., pp. 115-127. Piacenza, Italy (Phytoline Press: Piacenza).
  • Gaduory, D.M., Seem, R.C., Ficke, A., Wilcox, W.F. (2003). Ontogenic resistance to powdery mildew in grape berries., Phytopathology., 93(5):547-555. DOI: https://doi.org/10.1094/PHYTO.2003.93.5.547
  • Gashu, K, Persi, N.S, Drori, E, Harcavi, E, Agam, N, Bustan, A., Fait, A. (2020). temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Front. Plant Sci., 1-23. https://doi.org/10.3389/fpls.2020.588739
  • GENRES-081 (2009). Descriptor List for Grape Cultivars and Vitis Species, 2nd ed., OIV: Paris. France.
  • Gupta, N., Kumar Pal, R., Kour, A., Mıshra, K. (2020). Thermal unit requirement of grape (Vitis vinifera L.) cultivars under south western Punjab conditions. J. Agrometeorol., 22(4):469-476.
  • Hazelrigg. A.L., Bradshaw. T.L., Maia. G.S. (2021). Disease Susceptibility of Interspecific Cold-Hardy Grape Cultivars in Northeastern U.S.A. Horticulturae, 7. 216. DOI: https://doi.org/10.3390/horticulturae7080216
  • Huglin, P. (1978). Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. In Proceedings of the Symposium International sur l’ecologie de la Vigne., (pp. 89–98). Constanca: Ministre de l’Agriculture et de l’Industrie Alimentaire.
  • Jackson, D. I., Cherry, N. J. (1988). Prediction of a district’s grape-ripening capacity using a latitude temperature index (LTI). Am. J. Enol. Vitic, 39(1), 19–28.
  • Jones, G.V. (2007). Climate change: observations, projections and general implications for viticulture and wine production. Climate and Viticultural Congress, 10−14 April, Zaragoza. OIV, Paris, pp:55–66.
  • Jones, G.V., Duff, A.A., Hall, A., Myers, J.W. (2010). Spatial analysis of climate in winegrape growing regions in the western United States., Am J Enol Vitic., 61:313–326
  • Kalliopi. R., Simone, G., Massimo, P., Vasileios, E., Ilario, F., Susana, R.S., Matteo, M., Ivana, G., Giorgio, G., Lodovica, G.M., Luca, R. (2020). Impact of Chemical and Alternative Fungicides Applied to Grapevine cv Nebbiolo on Microbial Ecology and Chemical-Physical Grape Characteristics at Harvest. Front. Plant Sci., 11. 700. DOI: https://doi.org/10.3389/fpls.2020.00700
  • Kennelly, M.M., Gadoury, D.M., W.F. Wilcox., P.A. Magarey., R.C. (2005). Seem. Seasonal development of ontogenic resistance to downy mildew in grape berries and rachises. Phytopathology., 95:1445-1452. DOI: https://doi.org/10.1094/PHYTO-95-1445
  • Koçman, A. (1993). Türkiye İklimi. Ege Üniversitesi Edebiyat Fakülyesi Yayınları, Yanın no: 72. (in Turkish).
  • Köse, B. (2014). Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. cultivars in the maritime climate of Samsun in the Black Sea Region of Turkey. S. Afr. J. Enol. Vitic., 35(1): 90-102. DOI: https://doi.org/10.21548/35-1-988
  • Lakso, A.N., Pratt., C.S., Pearson, R.C., Pool, R.M., Seem., R.C., Welser, M.J. (1982). Photosynthesis, transpiration, and water use efficiency in mature grape leaves infected with Uncinula necator (powdery mildew). Phytopathology., 72:232-236.
  • Liu, H.F., Wu, B.H., Pei, G., Li, S.H., Li, L.S. (2006). Sugar and acid concentrations in 98 grape cultivars analysed by principal component analysis. J. Sci. Food Agric., 86:1526-1536. DOI: https://doi.org/10.1002/jsfa.2541
  • Londo, J.P., Johnson, L.M. (2014). Variation in the chilling requirement and budburst rate of wild Vitis species, Environ. Exp. Bot., 106, 138-147. DOI: https://doi.org/10.1016/j.envexpbot.2013.12.012
  • Lu, W., Newlands, N. K., Carisse, O., Atkinson, D. E., Cannon, A. J. (2020). Disease risk forecasting with bayesian learning networks: Application to grape powdery mildew (Erysiphe necator) in vineyards. Agronomy., 10:622. DOI: https://doi.org/10.3390/agronomy10050622
  • Malheiro, A.C., Santos, J.A., Fraga, H., Pinto, J.G. (2010). Climate change scenarios applied to viticulture zoning in Europe. Climate Res., 43(3):163.
  • Penman, H.L. (1948). Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc., London 193:120–146. DOI: https://doi.org/10.1098/rspa.1948.0037
  • Pool, R.M., Pearson, R.C., Welser, M.J., Lakso, A.N, Seem, R.C. (1984). Influence of powdery mildew on yield and growth of Rosette grapevines. Plant Dis., 68, 590–593. DOI: https://doi.org/10.1094/PD-69-590
  • Salinari, F., Giosue, S., Rossi, V., Tubiello, F.N., Rosenzweig, C., Gullino, M.L. (2007). Downy mildew outbreaks on grapevine under climate change: elaboration and application of an empirical-statistical model. EPPO Bulletin., 37:317-326.
  • Santillo, A.G, Rodrigues, F.T., Arthur, P.B., Villaviencio, A.L.C.H. (2011). Sensory analyses in grapes Benitaka. International Nuclear Atlantic Conference - Belo Horizonte, MG, Brazil, October 24-28.
  • SAS. (2003). Statistical Analysis System. SAS Release 9.1 for windows, SAS Institute Inc., Cary, NC, USA.
  • Stummer B.E., Francis I.L., Zanker T., Lattey K.A., Scott E.S. (2005). Effects of powdery mildew on the sensory properties and composition of Chardonnay juice and wine when grape sugar ripeness is standardised. Aust. J. Grape Wine Res., 11:66–76. DOI: https://doi.org/10.1111/j.1755-0238.2005.tb00280.x
  • Toaldo, I.M., Cruz, F.A., Alves, T.L., Gois, J.S., Borges, D.L.G., Cunha, H.P., Silva, E.L. Bordignon-Luiz, M.T. (2015). Bioactive potential of Vitis labrusca L. grape juices from the southern region of Brazil: phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. Food Chem., 173:527-535. DOI: https://doi.org/10.1016/j.foodchem.2014.09.171
  • Tonietto, J. (1999). Les macroclimats viticoles mondiaux etl’influence du mésoclimat sur la typicité de la Syrah et du Muscat de Hambourg dans le sud de la France : méthodologie de caractérisation (Thèse Doctorat)., Ecole Nationale Supérieure Agronomique, Montpellier.
  • Tonietto, J., Carbonneau, A. A. (2004). Multicriteria climatic classification system for grape-growing regions worldwide., Agric. Forest. Meteorol., 124(1). 81-97. DOI: https://doi.org/10.1016/j.agrformet.2003.06.001
  • TUIK (2021). Turkish Statistical Institute Statistics database, Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 , Accessed 15th August 2021.
  • Van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., Dubourdieu, D. (2004). Influence of climate, soil and cultivar on terroir. Am. J. Enol. Vitic., 55: 207-217.
  • Wan, Y.Z., Schwaninger, H., He, P.C., Wang, Y.J. (2007). Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis, 46:132-136. DOI: https://doi.org/10.5073/vitis.2007.46.132-136
  • Willocquet, L., Colombet, D., Rougier, M., Fargues, J., Clerjeau, M. (1996). Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. Eur. J. Plant Pathol., 102:441-449.
  • Winkler, A.J., Cook, J.A., Kliewer, W.M., Lider, L.A. (1974) General Viticulture, 4th Edition. University of California Press, Berkeley.
  • Yılmaz, E., Çiçek İ. (2018). Türkiye’nin detaylandırılmış Köppen-Geiger iklim bölgeleri. J. Hum. Sci. 15(1): 225–242. DOI: https://doi.org/10.14687/jhs.v15i1.5040
  • Yılmaz, E., Çiçek, İ. (2016). Türkiye Thornthwaite iklim sınıflandırması. J. Hum. Sci., 13 (3): 3973–3993. DOI: https://doi.org/10.14687/jhs.v13i3.3994
  • Zsófi, Z., Tóth, E., Rusjan, D., Bálo, B. (2011) Terroir aspects of grape quality in a cool climate wine region: relationship between water deficit, vegetative growth and berry sugar concentration. Sci. Hortic., 127, 494–499.

Disease resistance and fruit quality characteristics of 12 Vitis spp. grown in a humid-like climate region

Year 2022, , 457 - 470, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.16

Abstract

Viticulture is carried out for different purposes in almost every region of the world. Although V. vinifera L. cultivars are the most commonly grown species in Turkey, their cultivation is very limited in Yalova and similar humid regions. In these regions, fungal diseases are common due to heavy rain, limited sunlight and stagnant air movement, especially in spring and summer months. For this reason, viticulture can only be performed in these humid regions using intense fungicide. In this study, the aim was to determine the most suitable cultivars by comparing 80 years of climate data in Yalova province with eight bioclimatic indices obtained in two growing seasons using a reduced-synthetic-pesticide spray program. Some quality characteristics and susceptibility to fungal diseases (downy and powdery mildew) for a total of eight V. vinifera L., three V. labrusca, and one interspecies grape cultivar were evaluated in 2019 and 2020 in the humid Yalova region. V. labrusca × V. vinifera L. hybrids had higher total sugar (18.2% - 23.1%) and lower acidity (0.23% - 0.42%) than V. vinifera L. cultivars. In addition, these genotypes (Alden, Ülkemiz, Rizpem) had a lower incidence of powdery mildew in both years. ‘Alden’, ‘Autumn Royal’ and ‘Erenköy Beyazı Cl.27’ exhibited resistance to downy mildew.

Project Number

TAGEM/BBAD/16/A08/P04/01

References

  • Akturk, B., Uzun, H. (2019). Bazı sofralık üzüm çeşitlerinin Antalya’daki değişik yörelere uygunlukları ve etkili sıcaklık toplamı istekleri. Mediterr. Agric. Sci., 32(3):267-273. (in Turkish). DOI: https://doi.org/10.29136/mediterranean.520365
  • Atak, A., Akkurt, M., Polat, Z., Celik, H., Kahraman, K.A., Akgul, D.S., Özer, N., Soylemezoglu, G., Sire, G.G., Eibach, R. (2017). Susceptibility to downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necator) of different Vitis cultivars and genotypes. Cienc. e Tec. Vitivinic., 32(1):23-32. DOI: https://doi.org/10.1051/ctv/20173201023
  • Atak, A., Kahraman, K.A. (2012). Breeding studies and new table grapes in Turkey, 2012. E3 J Agric. Res. Develop., 2(3):80-85.
  • Atalay, İ., Mortan, K. (2006). Türkiye Bölgesel Coğrafyası (Regional Geography of Turkey)., İstanbul: İnkilap Kitabevi. (in Turkish).
  • Badr, G., Hoogenboom, G., Abouali, M., Moyer, M., Keller, M. (2018). Analysis of several bioclimatic indices for viticultural zoning in the Pacific northwest. Clim. Res., 76, 203–223. DOI: https://doi.org/10.3354/cr01532
  • Bahar, E., Korkutal, İ., Boz, Y. Tekirdağ ili Şarköy ilçesinin terroir açısından değerlendirilmesi. Şarköy Değerleri Sempozyumu, 14 October 2010. (in Turkish).
  • Blanco-Ward, D., Queijeiro, J.G., Jones, G.V. (2007). Spatial climate variability and viticulture in the Miño River Valley of Spain., Vitis., 46(2), 63-70. DOI: https://doi.org/10.5073/vitis.2007.46.63-70
  • Blouin J, Guimberteau G. (2000). Maturation et Maturite des Raisins., Feret, Bordeaux, ISBN: 2-902416-49-0.
  • Branas, J. (1974). Viticulture., Imp. Déhan., Montpellier.
  • Branas, J., Bernon, G., Levadoux, L. (1946). Eléments de Viticultura Générale. Imp. Déhan. Bordeaux.
  • Cadle-Davidson, L., Chicoine, D.R., Consolie, N.H. (2011). Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis., 95:202-211. DOI: https://doi.org/10.1094/PDIS-02-10-0092
  • Caffarra, A., Rinaldi, M., Eccel, E., Rossi, V., Pertot, I. (2021). Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agr. Ecosyst. Environ., 148:89-101. DOI: https://doi.org/10.1016/j.agee.2011.11.017
  • Caffi, T., Rossi, V., Leger, S.E., Bugiani, R. A. (2011). mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathol., 60, 522–531. DOI: https://doi.org/10.1111/j.1365-3059.2010.02395.x
  • Calonnec, A., Cartolaro, P., Poupot, C., Dubourdieu, D., Darriet, P. (2004). Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera L.) and wine. Plant Pathol., 53, 434–445. DOI: https://doi.org/10.1111/j.0032-0862.2004.01016.x
  • Carroll, J., Wilcox, W. (2003). Effects of humidity on the development of grapevine powdery mildew. Phytopathology, 93, 1137–1144. DOI: https://doi.org/10.1094/PHYTO.2003.93.9.1137
  • Chakraborty, S., Tiedermann, A.V., Teng, P.S. (2000). Climate change: potential impact on plant diseases. Env. Poll., 108, 317–326. DOI: https://doi.org/10.1016/S0269-7491(99)00210-9
  • Chen, M., Brun, F., Raynal, M., Makowski, D. (2020). Forecasting severe grape downy mildew attacks using machine learning. PLoS On., 15(3): e0230254. DOI: https://doi.org/10.1371/journal. pone.0230254
  • Cogato, A., Meggio, F., Pirotti, F., Cristante, A., Marinello, F. (2019). Analysis and impact of recent climate trends on grape composition in north-east Italy. BIO Web. Conf., 13.
  • Coombe, B.G. (1987). Influence of Temperature on Composition and Quality of Grapes. Acta Hortic, 206, 23-35.
  • Erinç, S. (1962). Klimatoloji ve Metodları Bölüm XI. Türkiye’nin İklim Şartları İst. Üniv. Coğrafya Enstitüsü Neşriyatı, No. 35, s. 366, İstanbul. (in Turkish).
  • FAOSTAT (2021). (Food and Agriculture Organization of the United Nations) Statistics database, Available online: http://www.fao.org/faostat/en/#data , Accessed 12nd August 2021
  • Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Santos, J.A. (2013). Future scenarios for viticultural zoning in Europe: Ensemble projections and uncertainties. Int. J. Biometeorol. 57(6), 909-925 DOI: https://doi.org/10.1007/s00484-012-0617-8
  • Fregoni, M. L., Schuster, D., Paoletti, A. (2003). ’indice bioclimatico di qualitá Fregoni. Terroir Zonazione Viticoltura., pp. 115-127. Piacenza, Italy (Phytoline Press: Piacenza).
  • Gaduory, D.M., Seem, R.C., Ficke, A., Wilcox, W.F. (2003). Ontogenic resistance to powdery mildew in grape berries., Phytopathology., 93(5):547-555. DOI: https://doi.org/10.1094/PHYTO.2003.93.5.547
  • Gashu, K, Persi, N.S, Drori, E, Harcavi, E, Agam, N, Bustan, A., Fait, A. (2020). temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Front. Plant Sci., 1-23. https://doi.org/10.3389/fpls.2020.588739
  • GENRES-081 (2009). Descriptor List for Grape Cultivars and Vitis Species, 2nd ed., OIV: Paris. France.
  • Gupta, N., Kumar Pal, R., Kour, A., Mıshra, K. (2020). Thermal unit requirement of grape (Vitis vinifera L.) cultivars under south western Punjab conditions. J. Agrometeorol., 22(4):469-476.
  • Hazelrigg. A.L., Bradshaw. T.L., Maia. G.S. (2021). Disease Susceptibility of Interspecific Cold-Hardy Grape Cultivars in Northeastern U.S.A. Horticulturae, 7. 216. DOI: https://doi.org/10.3390/horticulturae7080216
  • Huglin, P. (1978). Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. In Proceedings of the Symposium International sur l’ecologie de la Vigne., (pp. 89–98). Constanca: Ministre de l’Agriculture et de l’Industrie Alimentaire.
  • Jackson, D. I., Cherry, N. J. (1988). Prediction of a district’s grape-ripening capacity using a latitude temperature index (LTI). Am. J. Enol. Vitic, 39(1), 19–28.
  • Jones, G.V. (2007). Climate change: observations, projections and general implications for viticulture and wine production. Climate and Viticultural Congress, 10−14 April, Zaragoza. OIV, Paris, pp:55–66.
  • Jones, G.V., Duff, A.A., Hall, A., Myers, J.W. (2010). Spatial analysis of climate in winegrape growing regions in the western United States., Am J Enol Vitic., 61:313–326
  • Kalliopi. R., Simone, G., Massimo, P., Vasileios, E., Ilario, F., Susana, R.S., Matteo, M., Ivana, G., Giorgio, G., Lodovica, G.M., Luca, R. (2020). Impact of Chemical and Alternative Fungicides Applied to Grapevine cv Nebbiolo on Microbial Ecology and Chemical-Physical Grape Characteristics at Harvest. Front. Plant Sci., 11. 700. DOI: https://doi.org/10.3389/fpls.2020.00700
  • Kennelly, M.M., Gadoury, D.M., W.F. Wilcox., P.A. Magarey., R.C. (2005). Seem. Seasonal development of ontogenic resistance to downy mildew in grape berries and rachises. Phytopathology., 95:1445-1452. DOI: https://doi.org/10.1094/PHYTO-95-1445
  • Koçman, A. (1993). Türkiye İklimi. Ege Üniversitesi Edebiyat Fakülyesi Yayınları, Yanın no: 72. (in Turkish).
  • Köse, B. (2014). Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. cultivars in the maritime climate of Samsun in the Black Sea Region of Turkey. S. Afr. J. Enol. Vitic., 35(1): 90-102. DOI: https://doi.org/10.21548/35-1-988
  • Lakso, A.N., Pratt., C.S., Pearson, R.C., Pool, R.M., Seem., R.C., Welser, M.J. (1982). Photosynthesis, transpiration, and water use efficiency in mature grape leaves infected with Uncinula necator (powdery mildew). Phytopathology., 72:232-236.
  • Liu, H.F., Wu, B.H., Pei, G., Li, S.H., Li, L.S. (2006). Sugar and acid concentrations in 98 grape cultivars analysed by principal component analysis. J. Sci. Food Agric., 86:1526-1536. DOI: https://doi.org/10.1002/jsfa.2541
  • Londo, J.P., Johnson, L.M. (2014). Variation in the chilling requirement and budburst rate of wild Vitis species, Environ. Exp. Bot., 106, 138-147. DOI: https://doi.org/10.1016/j.envexpbot.2013.12.012
  • Lu, W., Newlands, N. K., Carisse, O., Atkinson, D. E., Cannon, A. J. (2020). Disease risk forecasting with bayesian learning networks: Application to grape powdery mildew (Erysiphe necator) in vineyards. Agronomy., 10:622. DOI: https://doi.org/10.3390/agronomy10050622
  • Malheiro, A.C., Santos, J.A., Fraga, H., Pinto, J.G. (2010). Climate change scenarios applied to viticulture zoning in Europe. Climate Res., 43(3):163.
  • Penman, H.L. (1948). Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc., London 193:120–146. DOI: https://doi.org/10.1098/rspa.1948.0037
  • Pool, R.M., Pearson, R.C., Welser, M.J., Lakso, A.N, Seem, R.C. (1984). Influence of powdery mildew on yield and growth of Rosette grapevines. Plant Dis., 68, 590–593. DOI: https://doi.org/10.1094/PD-69-590
  • Salinari, F., Giosue, S., Rossi, V., Tubiello, F.N., Rosenzweig, C., Gullino, M.L. (2007). Downy mildew outbreaks on grapevine under climate change: elaboration and application of an empirical-statistical model. EPPO Bulletin., 37:317-326.
  • Santillo, A.G, Rodrigues, F.T., Arthur, P.B., Villaviencio, A.L.C.H. (2011). Sensory analyses in grapes Benitaka. International Nuclear Atlantic Conference - Belo Horizonte, MG, Brazil, October 24-28.
  • SAS. (2003). Statistical Analysis System. SAS Release 9.1 for windows, SAS Institute Inc., Cary, NC, USA.
  • Stummer B.E., Francis I.L., Zanker T., Lattey K.A., Scott E.S. (2005). Effects of powdery mildew on the sensory properties and composition of Chardonnay juice and wine when grape sugar ripeness is standardised. Aust. J. Grape Wine Res., 11:66–76. DOI: https://doi.org/10.1111/j.1755-0238.2005.tb00280.x
  • Toaldo, I.M., Cruz, F.A., Alves, T.L., Gois, J.S., Borges, D.L.G., Cunha, H.P., Silva, E.L. Bordignon-Luiz, M.T. (2015). Bioactive potential of Vitis labrusca L. grape juices from the southern region of Brazil: phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. Food Chem., 173:527-535. DOI: https://doi.org/10.1016/j.foodchem.2014.09.171
  • Tonietto, J. (1999). Les macroclimats viticoles mondiaux etl’influence du mésoclimat sur la typicité de la Syrah et du Muscat de Hambourg dans le sud de la France : méthodologie de caractérisation (Thèse Doctorat)., Ecole Nationale Supérieure Agronomique, Montpellier.
  • Tonietto, J., Carbonneau, A. A. (2004). Multicriteria climatic classification system for grape-growing regions worldwide., Agric. Forest. Meteorol., 124(1). 81-97. DOI: https://doi.org/10.1016/j.agrformet.2003.06.001
  • TUIK (2021). Turkish Statistical Institute Statistics database, Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 , Accessed 15th August 2021.
  • Van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., Dubourdieu, D. (2004). Influence of climate, soil and cultivar on terroir. Am. J. Enol. Vitic., 55: 207-217.
  • Wan, Y.Z., Schwaninger, H., He, P.C., Wang, Y.J. (2007). Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis, 46:132-136. DOI: https://doi.org/10.5073/vitis.2007.46.132-136
  • Willocquet, L., Colombet, D., Rougier, M., Fargues, J., Clerjeau, M. (1996). Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. Eur. J. Plant Pathol., 102:441-449.
  • Winkler, A.J., Cook, J.A., Kliewer, W.M., Lider, L.A. (1974) General Viticulture, 4th Edition. University of California Press, Berkeley.
  • Yılmaz, E., Çiçek İ. (2018). Türkiye’nin detaylandırılmış Köppen-Geiger iklim bölgeleri. J. Hum. Sci. 15(1): 225–242. DOI: https://doi.org/10.14687/jhs.v15i1.5040
  • Yılmaz, E., Çiçek, İ. (2016). Türkiye Thornthwaite iklim sınıflandırması. J. Hum. Sci., 13 (3): 3973–3993. DOI: https://doi.org/10.14687/jhs.v13i3.3994
  • Zsófi, Z., Tóth, E., Rusjan, D., Bálo, B. (2011) Terroir aspects of grape quality in a cool climate wine region: relationship between water deficit, vegetative growth and berry sugar concentration. Sci. Hortic., 127, 494–499.
There are 58 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Research Articles
Authors

Gülhan Gülbasar Kandilli 0000-0002-2861-7876

Arif Atak 0000-0001-7251-2417

Yeşim Doyğacı This is me 0000-0002-4213-271X

Serkan Candar 0000-0002-2608-8691

Gökhan Söylemezoğlu 0000-0002-7959-0407

Erkan Yılmaz 0000-0002-3821-3648

Project Number TAGEM/BBAD/16/A08/P04/01
Publication Date September 23, 2022
Submission Date July 5, 2022
Acceptance Date August 6, 2022
Published in Issue Year 2022

Cite

APA Gülbasar Kandilli, G., Atak, A., Doyğacı, Y., Candar, S., et al. (2022). Disease resistance and fruit quality characteristics of 12 Vitis spp. grown in a humid-like climate region. International Journal of Agriculture Environment and Food Sciences, 6(3), 457-470. https://doi.org/10.31015/jaefs.2022.3.16


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27