Research Article
BibTex RIS Cite

Development of low oil emulsion gels by solidification of oil droplets and determination of their rheological properties

Year 2024, , 629 - 641, 29.09.2024
https://doi.org/10.31015/jaefs.2024.3.16

Abstract

This study aims to develop low-fat emulsion gels by physically solidifying oil droplets using a combination of pectin, soy protein, and bovine gelatin, and to investigate the rheological properties of these emulsion gels. The emulsion gels were formulated with different combinations of these biopolymers [PSG30 (pectin + soy protein + gelatin + 30% oil), PS30 (pectin + soy protein + 30% oil), P30 (pectin + 30% oil), G30 (gelatin + 30% oil)] and compared with commercially available low-fat mayonnaise (DYM40, 40% oil), mayonnaise (TM80, 80% oil), and spreadable fat (SY59, 59% oil) samples. The consistency index (K, Pa.sn) of the emulsion gels ranged from 1.903 to 150.739 Pa.sn, with PSG30 and PS30 formulations exhibiting higher K values than the commercial samples. The highest structural recovery percentage was observed in the SY59 sample at 114.91%. Thermal stability tests demonstrated that PSG30 and PS30 maintained their viscosity and storage modulus (G') values over a wide temperature range. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed significant hydrogen bonding and cross-linking interactions between pectin, soy protein, and gelatin. Microstructural imaging showed that PSG30 had the most homogeneous structure, consistent with its superior rheological performance. Molecular docking analysis determined the binding energy between gelatin and pectin to be -6.40 kcal/mol. Interaction between pectin (Arg-522 residue) and soy protein (11S globulin TGT) was facilitated by salt bridge formation. The developed formulations of pectin, soy protein, and gelatin demonstrate potential for producing low-fat emulsion gels with acceptable texture and stability properties for various food applications.

References

  • Abdolmaleki, K., Alizadeh, L., Hosseini, S. M., & Nayebzadeh, K. (2020). Concentrated O/W emulsions formulated by binary and ternary mixtures of sodium caseinate, xanthan and guar gums: rheological properties, microstructure, and stability. Food Science and Biotechnology, 29, 1685-1693. https://doi.org/10.1007/s10068-020-00836-1
  • Aewsiri, T., Benjakul, S., Visessanguan, W., Eun, J. B., Wierenga, P. A., & Gruppen, H. (2009). Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds. Food Chemistry, 117(1), 160-168. https://doi.org/10.1016/j.foodchem.2009.03.092
  • Albano, K. M., & Nicoletti, V. R. (2018). Ultrasound impact on whey protein concentrate-pectin complexes and in the O/W emulsions with low oil soybean content stabilization. Ultrasonics sonochemistry, 41, 562-571. https://doi.org/10.1016/j.ultsonch.2017.10.018
  • Alipal, J., Pu'Ad, N. M., Lee, T. C., Nayan, N. H. M., Sahari, N., Basri, H., ... & Abdullah, H. Z. (2021). A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 42, 240-250. https://doi.org/10.1016/j.matpr.2020.12.922
  • Blanco-Pérez, F., Steigerwald, H., Schülke, S., Vieths, S., Toda, M., & Scheurer, S. (2021). The dietary fiber pectin: health benefits and potential for the treatment of allergies by modulation of gut microbiota. Current allergy and asthma reports, 21, 1-19. https://doi.org/10.1007/s11882-021-01020-z
  • Blok, A. E., Bolhuis, D. P., Arnaudov, L. N., Velikov, K. P., & Stieger, M. (2023). Influence of thickeners (microfibrillated cellulose, starch, xanthan gum) on rheological, tribological and sensory properties of low-fat mayonnaises. Food Hydrocolloids, 136, 108242. https://doi.org/10.1016/j.foodhyd.2022.108242
  • Calabrò, E., Condello, S., Currò, M., Ferlazzo, N., Vecchio, M., Caccamo, D., . . . Ientile, R. (2013). 50 Hz Electromagnetic Field Produced Changes in FTIR Spectroscopy Associated with Mitochondrial Transmembrane Potential Reduction in Neuronal‐Like SH‐SY5Y Cells. Oxidative Medicine and Cellular Longevity, 2013(1), 414393. https://doi.org/10.1155/2013/414393
  • Cao, Y., Li, Z., Fan, X., Liu, M., Han, X., Huang, J., & Xiong, Y. L. (2022). Multifaceted functionality of l-arginine in modulating the emulsifying properties of pea protein isolate and the oxidation stability of its emulsions. Food & function, 13(3), 1336-1347. https://doi.org/10.1039/D1FO03372G
  • Chang, C. H., Li, J. H., Li, X., Wang, C. Y., Zhou, B., Su, Y. J., & Yang, Y. J. (2017). Effect of protein microparticle and pectin on properties of light mayonnaise. LWT-Food Science and Technology, 82, 8-14. https://doi.org/10.1016/j.lwt.2017.04.013
  • Chen, J., Li, Q., Du, R., Yu, X., Wan, Z., & Yang, X. (2022). Thermoresponsive dual-structured gel emulsions stabilized by glycyrrhizic acid nanofibrils in combination with monoglyceride crystals. Molecules, 27(19), 6542. https://doi.org/10.3390/molecules27196542
  • Chityala, P. K., Khouryieh, H., Williams, K., & Conte, E. (2016). Effect of xanthan/enzyme-modified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions. Food Chemistry, 212, 332-340. https://doi.org/10.1016/j.foodchem.2016.05.187
  • Dickinson, E. (2012). Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids, 28(1), 224-241. https://doi.org/10.1016/j.foodhyd.2011.12.017
  • Feng, X., Bansal, N., & Yang, H. (2016). Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage. Food Chemistry, 200, 283-292. https://doi.org/10.1016/j.foodchem.2016.01.030
  • Foegeding, E. A., Stieger, M., & van de Velde, F. (2017). Moving from molecules, to structure, to texture perception. Food Hydrocolloids, 68, 31-42. https://doi.org/10.1016/j.foodhyd.2016.11.009
  • Fontes-Candia, C., Ström, A., Lopez-Sanchez, P., López-Rubio, A., & Martínez-Sanz, M. (2020). Rheological and structural characterization of carrageenan emulsion gels. Algal Research, 47, 101873. https://doi.org/10.1016/j.algal.2020.101873
  • Forfang, K., Zimmermann, B., Kosa, G., Kohler, A., & Shapaval, V. (2017). FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PloS one, 12(1), e0170611. https://doi.org/10.1371/journal.pone.0170611
  • Fu, M., Geng, Q., Chen, J., He, X. H., He, X. M., Li, T., . . . Dai, T. T. (2023). Pea protein-quercetin glycoside complexes: Interaction, foaming and emulsifying properties. Journal of Molecular Liquids, 386, 122487. https://doi.org/10.1016/j.molliq.2023.122487
  • Funami, T., Nakano, K., Maeda, K., Yamasaki, H., & Nakauma, M. (2023). Characteristics of O/W emulsion gels stabilized by soy protein‐xanthan gum complex for plant‐based processed meat products. Journal of Texture Studies, 54(3), 428-439. https://doi.org/10.1111/jtxs.12757
  • Han, C. P., Ren, X. Y., Shen, X., Yang, X. Y., & Li, L. (2024). Improvement of physicochemical properties and quercetin delivery ability of fermentation-induced soy protein isolate emulsion gel processed by ultrasound. Ultrasonics sonochemistry, 107. https://doi.org/10.1016/j.ultsonch.2024.106902
  • Kamer, D. D. A. (2024). Synergistic formulation approach for developing pea protein and guar gum enriched olive oil-in-water emulsion gels as solid fat substitutes: Formulation optimization, characterization, and molecular simulation. International Journal of Biological Macromolecules, 257, 128718. https://doi.org/10.1016/j.ijbiomac.2023.128718
  • Kınaytürk, N. K. (2023). Bromukonazol’ün Moleküler Etkileşim Mekanizmasının DFT ve Moleküler Kenetlenme Yöntemleri İle Açıklanması. Journal of Natural and Applied Sciences, 27(2), 266-272. DOI: 10.19113/sdufenbed.1213761
  • Kim, B., Kang, B., Vales, T. P., Yang, S. K., Lee, J., & Kim, H. J. (2018). Polyphenol-Functionalized Hydrogels Using an Interpenetrating Chitosan Network and Investigation of Their Antioxidant Activity. Macromolecular Research, 26(1), 35-39. doi:10.1007/s13233-018-6001-8
  • Lee, M. C., Tan, C., Ravanfar, R., & Abbaspourrad, A. (2019). Ultrastable water-in-oil high internal phase emulsions featuring interfacial and biphasic network stabilization. ACS applied materials & interfaces, 11(29), 26433-26441. https://doi.org/10.1021/acsami.9b05089
  • Li, Q., He, Q., Xu, M., Li, J., Liu, X., Wan, Z., & Yang, X. (2020). Food-grade emulsions and emulsion gels prepared by soy protein–pectin complex nanoparticles and glycyrrhizic acid nanofibrils. Journal of agricultural and food chemistry, 68(4), 1051-1063. https://doi.org/10.1021/acs.jafc.9b04957
  • Liu, S., Lu, J., Zhang, J., Su, X., Peng, X., Guan, H., & Shi, C. (2022). Emulsion gels prepared with chia mucilage and olive oil as a new animal fat replacer in beef patties. Journal of Food Processing and Preservation, 46(11), e16972.
  • Ma, Y., Ye, F., Chen, J., Ming, J., Zhou, C., Zhao, G., & Lei, L. (2023). The microstructure and gel properties of linseed oil and soy protein isolate based-oleogel constructed with highland barley β-glucan and its application in luncheon meat. Food Hydrocolloids, 140, 108666. https://doi.org/10.1016/j.foodhyd.2023.108666
  • Makebe, C. W., Desobgo, Z. S. C., Ambindei, W. A., Billu, A., Nso, E. J., & Nisha, P. (2020). Optimization of pectinase‐assisted extraction of Annona muricata L. juice and the effect of liquefaction on its pectin structure. Journal of the Science of Food and Agriculture, 100(15), 5487-5497. https://doi.org/10.1002/jsfa.10600
  • Marcotte, M., Hoshahili, A. R. T., & Ramaswamy, H. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 34(8), 695-703. https://doi.org/10.1016/S0963-9969(01)00091-6
  • McClements, D. J. (2004). Food emulsions: principles, practices, and techniques. CRC press. https://doi.org/10.1201/9781420039436
  • Mohammadi, L., Ramezanian, A., Tanaka, F., & Tanaka, F. (2021). Impact of Aloe vera gel coating enriched with basil (Ocimum basilicum L.) essential oil on postharvest quality of strawberry fruit. Journal of Food Measurement and Characterization, 15(1), 353-362. https://doi.org/10.1007/s11694-020-00634-7
  • Montes de Oca-Ávalos, J. M., Huck-Iriart, C., Candal, R. J., & Herrera, M. L. (2016). Sodium caseinate/sunflower oil emulsion-based gels for structuring food. Food and Bioprocess Technology, 9, 981-992. https://doi.org/10.1007/s11947-016-1687-0
  • Moros, J., Franco, J., & Gallegos, C. (2002). Rheological properties of cholesterol-reduced, yolk-stabilized mayonnaise. Journal of the American Oil Chemists' Society, 79, 837-843. https://doi.org/10.1007/s11746-002-0567-6
  • Muñoz-González, I., Ruiz-Capillas, C., Salvador, M., & Herrero, A. M. (2021). Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties. Food Chemistry, 339, 128049. https://doi.org/10.1016/j.foodchem.2020.128049
  • Nasrolahi, S., Sadeghizadeh‐Yazdi, J., Ehrampoush, M. H., Madadizadeh, F., & Khalili, E. (2023). Evaluation of rheological and optical properties plus stability of beverage cloud emulsions prepared with corn oil, gum rosin, and modified starch. Food Science & Nutrition, 11(2), 806-816. https://doi.org/10.1002/fsn3.3115
  • Patel, A. R., Cludts, N., Sintang, M. D. B., Lesaffer, A., & Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food & function, 5(11), 2833-2841.
  • Pereira, R. R., Testi, M., Rossi, F., Silva, J. O. C., Ribeiro-Costa, R. M., Bettini, R., . . . Sonvico, F. (2019). UcuUba (Virola surinamensis) Fat-Based Nanostructured Lipid Carriers for Nail Drug Delivery of Ketoconazole: Development and Optimization Using Box-Behnken Design. Pharmaceutics, 11(6). https://doi.org/10.3390/pharmaceutics11060284
  • Peressini, D., Sensidoni, A., & de Cindio, B. (1998). Rheological characterization of traditional and light mayonnaises. Journal of food engineering, 35(4), 409-417. https://doi.org/10.1016/S0260-8774(98)00032-6
  • Pintado, T., Ruiz-Capillas, C., Jiménez-Colmenero, F., Carmona, P., & Herrero, A. M. (2015). Oil-in-water emulsion gels stabilized with chia (Salvia hispanica L.) and cold gelling agents: Technological and infrared spectroscopic characterization. Food Chemistry, 185, 470-478. https://doi.org/10.1016/j.foodchem.2015.04.024
  • Rao, M. A. (2010). Rheology of fluid and semisolid foods: principles and applications. Second Edition (Springer Science & Business Media, NY USA), 91-110.
  • Ren, Y., Huang, L., Zhang, Y., Li, H., Zhao, D., Cao, J., & Liu, X. (2022). Application of emulsion gels as fat substitutes in meat products. Foods, 11(13), 1950. https://doi.org/10.3390/foods11131950
  • Robledo, V. R., & Vázquez, L. I. C. (2019). Pectin-extraction, purification, characterization and applications. Pectins-extraction, purification, characterization and applications,. Volume 6 (United Kingdom).1-19.
  • Rudra, S. G., Hanan, E., Sagar, V. R., Bhardwaj, R., Basu, S., & Sharma, V. (2020). Manufacturing of mayonnaise with pea pod powder as a functional ingredient. Journal of Food Measurement and Characterization, 14(5), 2402-2413. https://doi.org/10.1007/s11694-020-00487-0
  • Samatra, M. Y., Noor, N. Q. I. M., Razali, U. H. M., Bakar, J., & Shaarani, S. M. (2022). Bovidae‐based gelatin: Extractions method, physicochemical and functional properties, applications, and future trends. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3153-3176
  • Schöning-Stierand, K., Diedrich, K., Fährrolfes, R., Flachsenberg, F., Meyder, A., Nittinger, E., . . . Rarey, M. (2020). Proteins Plus: Interactive analysis of protein–ligand binding interfaces. Nucleic acids research, 48(W1), W48-W53. https://doi.org/10.1093/nar/gkaa235
  • Singh, V. K., Pal, K., Pradhan, D. K., & Pramanik, K. (2013). Castor oil and sorbitan monopalmitate based organogel as a probable matrix for controlled drug delivery. Journal of applied polymer science, 130(3), 1503-1515. https://doi.org/10.1002/app.39315
  • Silva, R. C. d., Ferdaus, M. J., Foguel, A., & da Silva, T. L. T. (2023). Oleogels as a fat substitute in food: A current review. Gels, 9(3), 180.
  • Spassov, D. S., Atanasova, M., & Doytchinova, I. (2023). A role of salt bridges in mediating drug potency: A lesson from the N-myristoyltransferase inhibitors. Frontiers in molecular biosciences, 9, 1066029. https://doi.org/10.3389/fmolb.2022.1066029
  • Souza Paglarini, C., Vidal, V. A., Ribeiro, W., Badan Ribeiro, A. P., Bernardinelli, O. D., Herrero, A. M., . . . Rodrigues Pollonio, M. A. (2021). Using inulin‐based emulsion gels as fat substitute in salt reduced Bologna sausage. Journal of the Science of Food and Agriculture, 101(2), 505-517. https://doi.org/10.1002/jsfa.10659
  • Wang, J., Ai, H., & Liu, M. (2014). Enhanced welan gum production using cane molasses as substrate by Alcaligenes sp. ATCC31555. New Biotechnology(31), S40.
  • Wei, Y. C., Cheng, C. H., Ho, Y. C., Tsai, M. L., & Mi, F. L. (2017). Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocolloids, 69, 491-502. https://doi.org/10.1016/j.foodhyd.2017.03.010
  • Xu, X., Zhang, H., Li, L., Sun, L., Jia, B., Yang, H., & Zuo, F. (2021). Preparation of fat substitute based on the high-methoxyl pectin of citrus and application in moon-cake skin. Food Science and Technology, 42, e92121. https://doi.org/10.1590/fst.92121
  • Zeng, L. Q., Lee, J. S., Jo, Y. J., & Choi, M. J. (2023). Effects of micro- and nano-sized emulsions on physicochemical properties of emulsion-gelatin composite gels. Food Hydrocolloids, 139. https://doi.org/ARTN 108537
  • Zhang, Q., Fan, W., Shi, Y., Tu, Z., Hu, Y., & Zhang, J. (2023). Interaction between soy protein isolate/whey protein isolate and sucrose ester during microencapsulation: Multi-spectroscopy and molecular docking. Lwt, 188, 115363. https://doi.org/10.1016/j.lwt.2023.115363
Year 2024, , 629 - 641, 29.09.2024
https://doi.org/10.31015/jaefs.2024.3.16

Abstract

References

  • Abdolmaleki, K., Alizadeh, L., Hosseini, S. M., & Nayebzadeh, K. (2020). Concentrated O/W emulsions formulated by binary and ternary mixtures of sodium caseinate, xanthan and guar gums: rheological properties, microstructure, and stability. Food Science and Biotechnology, 29, 1685-1693. https://doi.org/10.1007/s10068-020-00836-1
  • Aewsiri, T., Benjakul, S., Visessanguan, W., Eun, J. B., Wierenga, P. A., & Gruppen, H. (2009). Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds. Food Chemistry, 117(1), 160-168. https://doi.org/10.1016/j.foodchem.2009.03.092
  • Albano, K. M., & Nicoletti, V. R. (2018). Ultrasound impact on whey protein concentrate-pectin complexes and in the O/W emulsions with low oil soybean content stabilization. Ultrasonics sonochemistry, 41, 562-571. https://doi.org/10.1016/j.ultsonch.2017.10.018
  • Alipal, J., Pu'Ad, N. M., Lee, T. C., Nayan, N. H. M., Sahari, N., Basri, H., ... & Abdullah, H. Z. (2021). A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 42, 240-250. https://doi.org/10.1016/j.matpr.2020.12.922
  • Blanco-Pérez, F., Steigerwald, H., Schülke, S., Vieths, S., Toda, M., & Scheurer, S. (2021). The dietary fiber pectin: health benefits and potential for the treatment of allergies by modulation of gut microbiota. Current allergy and asthma reports, 21, 1-19. https://doi.org/10.1007/s11882-021-01020-z
  • Blok, A. E., Bolhuis, D. P., Arnaudov, L. N., Velikov, K. P., & Stieger, M. (2023). Influence of thickeners (microfibrillated cellulose, starch, xanthan gum) on rheological, tribological and sensory properties of low-fat mayonnaises. Food Hydrocolloids, 136, 108242. https://doi.org/10.1016/j.foodhyd.2022.108242
  • Calabrò, E., Condello, S., Currò, M., Ferlazzo, N., Vecchio, M., Caccamo, D., . . . Ientile, R. (2013). 50 Hz Electromagnetic Field Produced Changes in FTIR Spectroscopy Associated with Mitochondrial Transmembrane Potential Reduction in Neuronal‐Like SH‐SY5Y Cells. Oxidative Medicine and Cellular Longevity, 2013(1), 414393. https://doi.org/10.1155/2013/414393
  • Cao, Y., Li, Z., Fan, X., Liu, M., Han, X., Huang, J., & Xiong, Y. L. (2022). Multifaceted functionality of l-arginine in modulating the emulsifying properties of pea protein isolate and the oxidation stability of its emulsions. Food & function, 13(3), 1336-1347. https://doi.org/10.1039/D1FO03372G
  • Chang, C. H., Li, J. H., Li, X., Wang, C. Y., Zhou, B., Su, Y. J., & Yang, Y. J. (2017). Effect of protein microparticle and pectin on properties of light mayonnaise. LWT-Food Science and Technology, 82, 8-14. https://doi.org/10.1016/j.lwt.2017.04.013
  • Chen, J., Li, Q., Du, R., Yu, X., Wan, Z., & Yang, X. (2022). Thermoresponsive dual-structured gel emulsions stabilized by glycyrrhizic acid nanofibrils in combination with monoglyceride crystals. Molecules, 27(19), 6542. https://doi.org/10.3390/molecules27196542
  • Chityala, P. K., Khouryieh, H., Williams, K., & Conte, E. (2016). Effect of xanthan/enzyme-modified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions. Food Chemistry, 212, 332-340. https://doi.org/10.1016/j.foodchem.2016.05.187
  • Dickinson, E. (2012). Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids, 28(1), 224-241. https://doi.org/10.1016/j.foodhyd.2011.12.017
  • Feng, X., Bansal, N., & Yang, H. (2016). Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage. Food Chemistry, 200, 283-292. https://doi.org/10.1016/j.foodchem.2016.01.030
  • Foegeding, E. A., Stieger, M., & van de Velde, F. (2017). Moving from molecules, to structure, to texture perception. Food Hydrocolloids, 68, 31-42. https://doi.org/10.1016/j.foodhyd.2016.11.009
  • Fontes-Candia, C., Ström, A., Lopez-Sanchez, P., López-Rubio, A., & Martínez-Sanz, M. (2020). Rheological and structural characterization of carrageenan emulsion gels. Algal Research, 47, 101873. https://doi.org/10.1016/j.algal.2020.101873
  • Forfang, K., Zimmermann, B., Kosa, G., Kohler, A., & Shapaval, V. (2017). FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PloS one, 12(1), e0170611. https://doi.org/10.1371/journal.pone.0170611
  • Fu, M., Geng, Q., Chen, J., He, X. H., He, X. M., Li, T., . . . Dai, T. T. (2023). Pea protein-quercetin glycoside complexes: Interaction, foaming and emulsifying properties. Journal of Molecular Liquids, 386, 122487. https://doi.org/10.1016/j.molliq.2023.122487
  • Funami, T., Nakano, K., Maeda, K., Yamasaki, H., & Nakauma, M. (2023). Characteristics of O/W emulsion gels stabilized by soy protein‐xanthan gum complex for plant‐based processed meat products. Journal of Texture Studies, 54(3), 428-439. https://doi.org/10.1111/jtxs.12757
  • Han, C. P., Ren, X. Y., Shen, X., Yang, X. Y., & Li, L. (2024). Improvement of physicochemical properties and quercetin delivery ability of fermentation-induced soy protein isolate emulsion gel processed by ultrasound. Ultrasonics sonochemistry, 107. https://doi.org/10.1016/j.ultsonch.2024.106902
  • Kamer, D. D. A. (2024). Synergistic formulation approach for developing pea protein and guar gum enriched olive oil-in-water emulsion gels as solid fat substitutes: Formulation optimization, characterization, and molecular simulation. International Journal of Biological Macromolecules, 257, 128718. https://doi.org/10.1016/j.ijbiomac.2023.128718
  • Kınaytürk, N. K. (2023). Bromukonazol’ün Moleküler Etkileşim Mekanizmasının DFT ve Moleküler Kenetlenme Yöntemleri İle Açıklanması. Journal of Natural and Applied Sciences, 27(2), 266-272. DOI: 10.19113/sdufenbed.1213761
  • Kim, B., Kang, B., Vales, T. P., Yang, S. K., Lee, J., & Kim, H. J. (2018). Polyphenol-Functionalized Hydrogels Using an Interpenetrating Chitosan Network and Investigation of Their Antioxidant Activity. Macromolecular Research, 26(1), 35-39. doi:10.1007/s13233-018-6001-8
  • Lee, M. C., Tan, C., Ravanfar, R., & Abbaspourrad, A. (2019). Ultrastable water-in-oil high internal phase emulsions featuring interfacial and biphasic network stabilization. ACS applied materials & interfaces, 11(29), 26433-26441. https://doi.org/10.1021/acsami.9b05089
  • Li, Q., He, Q., Xu, M., Li, J., Liu, X., Wan, Z., & Yang, X. (2020). Food-grade emulsions and emulsion gels prepared by soy protein–pectin complex nanoparticles and glycyrrhizic acid nanofibrils. Journal of agricultural and food chemistry, 68(4), 1051-1063. https://doi.org/10.1021/acs.jafc.9b04957
  • Liu, S., Lu, J., Zhang, J., Su, X., Peng, X., Guan, H., & Shi, C. (2022). Emulsion gels prepared with chia mucilage and olive oil as a new animal fat replacer in beef patties. Journal of Food Processing and Preservation, 46(11), e16972.
  • Ma, Y., Ye, F., Chen, J., Ming, J., Zhou, C., Zhao, G., & Lei, L. (2023). The microstructure and gel properties of linseed oil and soy protein isolate based-oleogel constructed with highland barley β-glucan and its application in luncheon meat. Food Hydrocolloids, 140, 108666. https://doi.org/10.1016/j.foodhyd.2023.108666
  • Makebe, C. W., Desobgo, Z. S. C., Ambindei, W. A., Billu, A., Nso, E. J., & Nisha, P. (2020). Optimization of pectinase‐assisted extraction of Annona muricata L. juice and the effect of liquefaction on its pectin structure. Journal of the Science of Food and Agriculture, 100(15), 5487-5497. https://doi.org/10.1002/jsfa.10600
  • Marcotte, M., Hoshahili, A. R. T., & Ramaswamy, H. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 34(8), 695-703. https://doi.org/10.1016/S0963-9969(01)00091-6
  • McClements, D. J. (2004). Food emulsions: principles, practices, and techniques. CRC press. https://doi.org/10.1201/9781420039436
  • Mohammadi, L., Ramezanian, A., Tanaka, F., & Tanaka, F. (2021). Impact of Aloe vera gel coating enriched with basil (Ocimum basilicum L.) essential oil on postharvest quality of strawberry fruit. Journal of Food Measurement and Characterization, 15(1), 353-362. https://doi.org/10.1007/s11694-020-00634-7
  • Montes de Oca-Ávalos, J. M., Huck-Iriart, C., Candal, R. J., & Herrera, M. L. (2016). Sodium caseinate/sunflower oil emulsion-based gels for structuring food. Food and Bioprocess Technology, 9, 981-992. https://doi.org/10.1007/s11947-016-1687-0
  • Moros, J., Franco, J., & Gallegos, C. (2002). Rheological properties of cholesterol-reduced, yolk-stabilized mayonnaise. Journal of the American Oil Chemists' Society, 79, 837-843. https://doi.org/10.1007/s11746-002-0567-6
  • Muñoz-González, I., Ruiz-Capillas, C., Salvador, M., & Herrero, A. M. (2021). Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties. Food Chemistry, 339, 128049. https://doi.org/10.1016/j.foodchem.2020.128049
  • Nasrolahi, S., Sadeghizadeh‐Yazdi, J., Ehrampoush, M. H., Madadizadeh, F., & Khalili, E. (2023). Evaluation of rheological and optical properties plus stability of beverage cloud emulsions prepared with corn oil, gum rosin, and modified starch. Food Science & Nutrition, 11(2), 806-816. https://doi.org/10.1002/fsn3.3115
  • Patel, A. R., Cludts, N., Sintang, M. D. B., Lesaffer, A., & Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food & function, 5(11), 2833-2841.
  • Pereira, R. R., Testi, M., Rossi, F., Silva, J. O. C., Ribeiro-Costa, R. M., Bettini, R., . . . Sonvico, F. (2019). UcuUba (Virola surinamensis) Fat-Based Nanostructured Lipid Carriers for Nail Drug Delivery of Ketoconazole: Development and Optimization Using Box-Behnken Design. Pharmaceutics, 11(6). https://doi.org/10.3390/pharmaceutics11060284
  • Peressini, D., Sensidoni, A., & de Cindio, B. (1998). Rheological characterization of traditional and light mayonnaises. Journal of food engineering, 35(4), 409-417. https://doi.org/10.1016/S0260-8774(98)00032-6
  • Pintado, T., Ruiz-Capillas, C., Jiménez-Colmenero, F., Carmona, P., & Herrero, A. M. (2015). Oil-in-water emulsion gels stabilized with chia (Salvia hispanica L.) and cold gelling agents: Technological and infrared spectroscopic characterization. Food Chemistry, 185, 470-478. https://doi.org/10.1016/j.foodchem.2015.04.024
  • Rao, M. A. (2010). Rheology of fluid and semisolid foods: principles and applications. Second Edition (Springer Science & Business Media, NY USA), 91-110.
  • Ren, Y., Huang, L., Zhang, Y., Li, H., Zhao, D., Cao, J., & Liu, X. (2022). Application of emulsion gels as fat substitutes in meat products. Foods, 11(13), 1950. https://doi.org/10.3390/foods11131950
  • Robledo, V. R., & Vázquez, L. I. C. (2019). Pectin-extraction, purification, characterization and applications. Pectins-extraction, purification, characterization and applications,. Volume 6 (United Kingdom).1-19.
  • Rudra, S. G., Hanan, E., Sagar, V. R., Bhardwaj, R., Basu, S., & Sharma, V. (2020). Manufacturing of mayonnaise with pea pod powder as a functional ingredient. Journal of Food Measurement and Characterization, 14(5), 2402-2413. https://doi.org/10.1007/s11694-020-00487-0
  • Samatra, M. Y., Noor, N. Q. I. M., Razali, U. H. M., Bakar, J., & Shaarani, S. M. (2022). Bovidae‐based gelatin: Extractions method, physicochemical and functional properties, applications, and future trends. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3153-3176
  • Schöning-Stierand, K., Diedrich, K., Fährrolfes, R., Flachsenberg, F., Meyder, A., Nittinger, E., . . . Rarey, M. (2020). Proteins Plus: Interactive analysis of protein–ligand binding interfaces. Nucleic acids research, 48(W1), W48-W53. https://doi.org/10.1093/nar/gkaa235
  • Singh, V. K., Pal, K., Pradhan, D. K., & Pramanik, K. (2013). Castor oil and sorbitan monopalmitate based organogel as a probable matrix for controlled drug delivery. Journal of applied polymer science, 130(3), 1503-1515. https://doi.org/10.1002/app.39315
  • Silva, R. C. d., Ferdaus, M. J., Foguel, A., & da Silva, T. L. T. (2023). Oleogels as a fat substitute in food: A current review. Gels, 9(3), 180.
  • Spassov, D. S., Atanasova, M., & Doytchinova, I. (2023). A role of salt bridges in mediating drug potency: A lesson from the N-myristoyltransferase inhibitors. Frontiers in molecular biosciences, 9, 1066029. https://doi.org/10.3389/fmolb.2022.1066029
  • Souza Paglarini, C., Vidal, V. A., Ribeiro, W., Badan Ribeiro, A. P., Bernardinelli, O. D., Herrero, A. M., . . . Rodrigues Pollonio, M. A. (2021). Using inulin‐based emulsion gels as fat substitute in salt reduced Bologna sausage. Journal of the Science of Food and Agriculture, 101(2), 505-517. https://doi.org/10.1002/jsfa.10659
  • Wang, J., Ai, H., & Liu, M. (2014). Enhanced welan gum production using cane molasses as substrate by Alcaligenes sp. ATCC31555. New Biotechnology(31), S40.
  • Wei, Y. C., Cheng, C. H., Ho, Y. C., Tsai, M. L., & Mi, F. L. (2017). Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocolloids, 69, 491-502. https://doi.org/10.1016/j.foodhyd.2017.03.010
  • Xu, X., Zhang, H., Li, L., Sun, L., Jia, B., Yang, H., & Zuo, F. (2021). Preparation of fat substitute based on the high-methoxyl pectin of citrus and application in moon-cake skin. Food Science and Technology, 42, e92121. https://doi.org/10.1590/fst.92121
  • Zeng, L. Q., Lee, J. S., Jo, Y. J., & Choi, M. J. (2023). Effects of micro- and nano-sized emulsions on physicochemical properties of emulsion-gelatin composite gels. Food Hydrocolloids, 139. https://doi.org/ARTN 108537
  • Zhang, Q., Fan, W., Shi, Y., Tu, Z., Hu, Y., & Zhang, J. (2023). Interaction between soy protein isolate/whey protein isolate and sucrose ester during microencapsulation: Multi-spectroscopy and molecular docking. Lwt, 188, 115363. https://doi.org/10.1016/j.lwt.2023.115363
There are 53 citations in total.

Details

Primary Language English
Subjects Food Engineering, Food Technology
Journal Section Research Articles
Authors

Deniz Damla Altan Kamer 0000-0002-9119-5979

Publication Date September 29, 2024
Submission Date July 24, 2024
Acceptance Date September 8, 2024
Published in Issue Year 2024

Cite

APA Altan Kamer, D. D. (2024). Development of low oil emulsion gels by solidification of oil droplets and determination of their rheological properties. International Journal of Agriculture Environment and Food Sciences, 8(3), 629-641. https://doi.org/10.31015/jaefs.2024.3.16

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27