Review Article
BibTex RIS Cite

Killer Yeast as a Novel Tool in Biotechnology: Advances in Targeted Antimicrobial Strategies

Year 2025, Volume: 9 Issue: Special, 247 - 255, 28.12.2025
https://doi.org/10.31015/2025.si.11

Abstract

Killer yeasts, a distinct group of yeast strains capable of secreting extracellular proteinaceous toxins lethal to susceptible microorganisms, have emerged as promising biotechnological tools for developing targeted antimicrobial strategies. These killer toxins act through specific mechanisms—such as inhibition of β-glucan synthesis, disruption of membrane integrity, or interference with vital metabolic pathways—thereby enabling the selective elimination of pathogenic fungi and certain bacteria while preserving beneficial microbiota. These toxins, often referred to as killer toxins, act through highly specific mechanisms-such as disrupting cell wall synthesis, impairing membrane integrity, or inhibiting essential metabolic pathways-allowing for the selective elimination of pathogenic fungi and certain bacteria. Engineered killer yeasts have demonstrated promising applications across multiple sectors, including food preservation, where they can prevent spoilage caused by fungal contamination; agriculture, where they can function as biological control agents against plant pathogens; and clinical settings, where they may provide alternative or adjunct therapies for antifungal-resistant infections. Additionally, killer yeast strains can be integrated into biofilm management strategies, disrupting microbial communities that are otherwise resistant to chemical disinfectants. Despite their potential, several challenges remain in translating killer yeast technology to large-scale and real-world applications. These include ensuring consistent toxin production under industrial conditions, assessing long-term ecological impacts, navigating regulatory frameworks, and addressing potential resistance development in target populations. Continued interdisciplinary research combining microbiology, biotechnology, and systems biology is essential to fully harness the potential of killer yeast in targeted antimicrobial interventions. This high specificity offers an advantage over conventional broad-spectrum antimicrobials, which often induce resistance and disrupt microbial balance. This review consolidates current progress and emerging insights, emphasizing both the opportunities and the constraints of killer yeast technology as a next-generation, precision-oriented antimicrobial platform aligned with sustainable biotechnology and the One Health approach.

References

  • Aday, S., Pala, Ç. U., Cam, B. A., & Bulut, S. (2021). Combined effects of acidification and high-pressure processing on microbial inactivation, bioactive compounds and antioxidant activity of liquorice root sherbet. International Journal of Agriculture Environment and Food Sciences, 5(3), 374-384.
  • Aguigar, C., Lucas, C., Calado, S., Silva, S. (2008). Unusual properties of the halotolerant yeast Candida nodaensis killer toxin, CnKT. Microbiological Research, 163: 243-251.
  • Al-Ani, B. M., Al-Saeedi, S. S. S. (2023). Production and effect of killer toxins by Saccharomyces cervisiae Pythium sp. on in vitro. Indian Journal of Ecology, 50(21): 142-148
  • Al-Obaydi, A. H., Mahmood, N. N., Alwan, B. (2023). Effect of baker yeast crude killer toxin on some pathogenic microorganisms. Latin American Journal of Biotechnological and Life Sciences, 3, 8(1).
  • Altuntaş, E.G., Özçelik, F. (2007). Killer özellikli mayaların etki mekanizmaları ve endüstride yol açtıkları sorunlar. Gıda, 32 (4): 205-242. “(in Turkish)”
  • Alturki, S. N., Al-Saud, N. S., Alhejin, A. M., Hussan Amasha, R., Almanzlawi, A. M. K., Hassan, S. M. (2019). Killer phenomenon in yeast: an overview. Journal of American Science, 15(4).
  • Baeza, M.E., Sanhueza, M.A., Cifuentes, V.H. (2008). Occurrence of killer yeast strains in industrial and clinical yeast isolates. Biological Research., 41, 173-182.
  • Bajaj, B.K., Raina, S., Singh, S. (2013). Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. Journal of Basic Microbiology, 53, 645-656.
  • Banjara, N., Nickerson, K. W., Suhr, M. J., Hallen-Adams, H. E. (2016). Killer Toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts. International Journal of Food Microbiology, 222, 23-29.
  • Belda, I., Ruiz, J., Alonso, A., Marquina, D., Santos, A. (2017). The biology of Pichia membranifaciens killer toxins. Toxins, 9(4), 112.
  • Benda, I. (1985). Hefen in der Kellerwirtschaft-untersuchungen uber sogenannte killer hefen bei der mostgarung. Deutscher.Weinbau 40, 1166-1171.
  • Billerbeck, S., Walker, R. S., Pretorius, I. S. (2024). Killer yeasts: expanding frontiers in the age of synthetic biology. Trends in Biotechnology, 42(9), 1081-1096.
  • Boekhout T, Robert V. (2003). Yeasts in food, beneficial and determental aspects. Behr’s Verlag DE, 362-467.
  • Boynton, P. J. (2019). The ecology of killer yeasts: interference competition in natural habitats. Yeast, 36(8), 473-485.
  • Bussey H. (1972). Effects of yeast killer factor on sensitive cells. Nature New Biology, 235, 73-75.
  • Buzdar M.A, Chi Z, Wang Q, Hua M.X, Chi Z.M. (2011). Production, purification and characterization of a novel killer toxin from Kluyveromyces siamensis against a pathegenic yeast in crab. Applied Microbiology and Biotechnology, 91: 1571-1579.
  • Cambaza, E., Koseki, S., & Kawamura, S. (2019). Fusarium graminearum growth and its fitness to the commonly used models. International Journal of Agriculture Environment and Food Sciences, 3(1), 9-11.
  • Chan, A., Hays, M., Sherlock, G. (2024). The viral k1 killer yeast system: toxicity, immunity, and resistance. Yeast, 4, 11-12, 668-680.
  • Chi Z.M, Liu G.L, Zhao S.F, Li J., Peng Y. (2010). Marine yeasts as a biocontrol agents and producers of bio-products. Applied Microbiology and Biotechnology, 86: 1227-1241.
  • Comitini F, Di Pietro N, Zacchi L, Mannazzu I. (2004). Kluyveromyces phaffi killer toxin active against wine spoilage yeasts: purification and characterization. Microbiology, 150: 2535-2541.
  • Dabhole M.P, Joishy K.N. (2005). Production and effect of killer toxin by Saccharomyces cerevisiae and Pichia kluyveri on sensitive yeasts and fungal pathogens. Indian Journal of Biotechnology, 4: 290-292.
  • de Ullivarri, M. F., Merín, M. G., Raya, R. R., de Ambrosini, V. I. M., Mendoza, L. M. (2024). Killer yeasts used as starter cultures to modulate the behavior of potential spoilage non-Saccharomyces yeasts during malbec wine fermentation. Food Bioscience, 57, 103424.
  • Dhillon, P. K., Kaur, M., Sharma, S. C., Mahmood, A. (2025). Harnessing killer yeast system: from molecular insight to real world biocontrol solution. Archives of Microbiology, 207(5), 1-16.
  • El-Banna A.A, El-Sahn M.A, Shehata M.G. (2011). Yeasts producing killer toxins: an overview. Alexandria Journal of Food Science and Technology, 8(2), 41-53.
  • Gier, S., Simon, M., Gasparoni, G., Khalifa, S., Schulz, M. H., Schmitt, M. J., Breinig, F. (2020). Yeast viral killer toxin k1 induces specific host cell adaptions via intrinsic selection pressure. Applied and Environmental Microbiology, 86(4), e02446-19.
  • Giometto, A., Nelson, D. R., Murray, A. W. (2021). Antagonism between killer yeast strains as an experimental model for biological nucleation dynamics. Elife, 10, e62932.
  • Giovati, L. (2021). Wickerhamomyces yeast killer toxins’ Medical Applications. Toxins, 13 (9).
  • Guyard C, Dehecq E, Tissier J.P, Polonelli L, Dei-Cas E, Cailliez J.C, Menozzi F.D. (2002). Involvement of beta-glucans in the wide-spectrum antimicrobial activity of Williopsis saturnus var. mrakii MUCL 41968 killer toxin. Molecular Medicine, 8, 686-694.
  • Henriques-Normark B. (2007). Molecular Epidemiology and mechanisms for antibiotic resistance in Streptecoccus pneumoniae. In: Hakenbeck, r, chhatwal GS (eds) molecular biology of Streptecocci. Horrison Press, Wymondham. Norfolk, UK, 269-290.
  • Izgu, F., Altınbay, D., Yüceliş, A. (1997). Identification and killer activity of a yeast contaminating starter cultures of Saccharomyces cerevisiae strains used in the Turkish baking industry. Food Microbiology, 14, 125-131.
  • Kara, G.N., Özbaş, Y. (2013). Sofralık zeytin üretiminde doğal maya florasının önemi. Gıda, 38(6), 375-382. “(in Turkish)”
  • Kast A, Klassen R, Meinhardt F. (2014). rRNA fragmentation induced by a yeast killer toxin. Molecular Microbiology, 91(3): 06-617.
  • Lim, S.L., Tay, S.T. (2011). Diversity and killer activity of yeasts in malaysian fermented food samples. Tropical Biomedicine, 28(2): 438-443.
  • Llorente, P., Marquina, D., Santos, A., Peinado, J.M., Spencer-Martins, I. (1997). Effect of salt on the killer phenotype of yeasts from olive brines. Applied and Environmental Microbiology, 63, 1165-1167.
  • Magliani, W., Conti, S., Travassos, L.R., Polonelli, L. (2008). From yeast killer toxins to antibodies and beyond. FEMS Microbiology Letters, 288, 1-8.
  • Mannazzu, I., Domizio, P., Carboni, G., Zara, S., Zara, G., Comitini, F., Ciani, M. (2019). Yeast killer toxins: from ecological significance to application. Critical Reviews in Biotechnology, 39(5), 603-617.
  • Maqueda, M., Zamora, E., Alvarez, M.L., Ramirez, M. (2011). Characterization, ecological distribution, and population dynamics of Saccharomyces sensu stricto killer yeasts in the spontaneous grape must fermentations of southwestern Spain. Applied and Environmental Microbiology, 78(3): 735-743.
  • Marquina, D., Santos, A., Peinado, J.M. (2002). Biology of killer yeasts. International Microbiology, 5, 65-71.
  • Mehlomakulu, N.N., Setati, M., Divol, B. (2014). Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. International Journal of Food Microbiology, 188, 83-91.
  • Meneghin, M.C., Reis, V.R., Antonini, S.R. (2010). Inhibition of Bacteria contaminating alcoholic fermentations by killer yeasts. Brazilian Archives of Biology and Technology, 53, 1043-1050.
  • Molina-Vera, C., Morales-Tlalpan, V., Chavez-Vega, A., Uribe-López, J., Trujillo-Barrientos, J., Campos-Guillén, J., Saldaña, C. (2024). The killer Saccharomyces cerevisiae toxin: from origin to biomedical research. Microorganisms, 12(12), 2481.
  • Ochigava, J., Coliier, P.J., Walker, G.M., Hakenbeck, R. (2011). Williopsis saturnus Yeast killer toxin does not kill Streptecoccus pneumoniae. Antonie van Leeuwenhoek, 99: 559-566.
  • Orentaite, I., Poranen, M. M., Oksanen, H. M., Daugelavicius, R., Bamford, D. H. (2016). K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 16(2), fow003.
  • Özçelik, F., Türkmen, U., Ateş, S. (1996). Farklı bölgelerden izole edilen şarap mayalarının killer özelliklerinin belirlenmesi. Turkish Journal of Biology, 20, 241-249. “(in Turkish)”
  • Parafati, L., Palmeri, R., Pitino, I., Restuccia, C. (2022). Killer yeasts isolated from olive brines: technological and probiotic aptitudes. Food Microbiology, 103, 103950.
  • Parveen, R.M., Begum, J.A. (2010). Production and effect of killer toxin by Saccharomyces cerevisiae on sensitive yeast and fungal pathogens. Adhiparasakthi Collage of Arts and Science, 3(1), 127-129.
  • Petering, J.E., Symons, M.R., Langridge, P., Henschke, P.A. (1991). Determination of killer yeast activity in fermenting grape juice by using a marked Saccharomyces wine yeast strain. Applied and Environmental Microbiology, 57, 3232-3236.
  • Polonelli, L., Morace, G. (1987). Production and characterization of yeast killer toxin monoclonal antibodies. Journal of Clinical Microbilology, 25, 460-462.
  • Ramon-Portugal, F., Delia, M.L., Strehaiano, P., Riba, J.P. (1998). Mixed culture of killer and sensitive Saccharomyces cerevisiae strains in batch and continuous fermentations. World Journal of Microbiology and Biotechnology, 14, 83-87.
  • Rodriguez-Cousiño, N., Gómez, P., Esteban, R. (2022). Expression of the k74 killer toxin from Saccharomyces paradoxus is modulated by the toxin-encoding m74 double-stranded rna 5′ untranslated terminal region. Applied and Environmental Microbiology, 88(8), e02030-21.
  • Santos, A., Marquina, D. (2004). Killer toxin of Pichia membranafaciens and its possible use as a biocontrol agent against grey mould disease of grape wine. Microbiology, 150, 2527-2534.
  • Satora, P., Tarko, T., Sreka, P., Blaszczyk, U. (2014). The influence of Wickerhamomyces anomalus killer yeast on the fermentation and chemical composition of apple wines. FEMS, 729-740.
  • Schmitt, M.J., Breining, F. (2006). Yeast viral killer toxins: lethality and self-protection. Nature Reviews Microbiology, 4, 212-221.
  • Sertkaya, A. (2005). Investigation of cytocidal effect of k5 type yeast killer protein on sensitive microbial cells. Master’s Thesis, Department of Biology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
  • Servienė, E., Serva, S. (2023). Recent advances in the yeast killer systems Research. Microorganisms, 11(5), 1191.
  • Sesti, F., Shih, T.M., Nkolaeva, N., Goldstein, S.A.N. (2001). Immunity to K1 killer toxin: internal tok1 blockade. Cell, 105, 637-644.
  • Silva-Graca, M., Neves, L., Lucas, C. (2003). Outlines for the definition of halotolerance/halophily in yeasts: Candida versatilis( halophila) CBS4019 as the archetype? FEMS Yeast Research, 3, 347-362.
  • Suzuki, C. (1999). Secretion of a Protoxin post-translationally controlled by NaCl in a halotolerant yeast, Pichia farinosa. Yeast, 15, 123-131.
  • Unver, T., Erenler, A. Ş. Ö., & Kıran, T. R. (2025). Anti-infective effect of Aquilaria malaccensis L. essential oil against Candida strains, the leading cause of yeast infectious. International Journal of Agriculture Environment and Food Sciences, 9(2), 325-330.
  • Vepštaitė-Monstavičė, I., Lukša-Žebelovič, J., Apšegaitė, V., Mozūraitis, R., Lisicinas, R., Stanevičienė, R., Servienė, E. (2025). Profiles of killer systems and volatile organic compounds of rowanberry and rosehip-inhabiting yeasts substantiate implications for biocontrol. Foods, 14(2), 288.
  • Waema, S., Maneesri, J., Masniyom, P. (2009). Isolation and identification of killer yeast from fermented vegetables. Asian Journal of Food and Agro-Industry, 2: 126-134.
  • Wang, X., Chi, Z.M., Yue, L., Li, J., Li, M., Wu, L. (2007a). A marine killer yeast against the pathogenic yeast strain in crab (Portunus trituberculatus ) and an optimization of the toxin production. Microbiology Research, 162, 77-85.
  • Wang, X., Chi, Z.M., Yue, L., Li, J., Li, M., Wu, L. (2007b). Purification and characterization of killer toxin from a marine yeast Pichia anomala YF07b against a yeast strain pathogenic yeast in crab. Current Microbiology, 55, 396-401.
  • Yehia, H. M., El-Khadragy, M. F., Al-Masoud, A. H., Ramadan, E. M., El-Din, M. F. S. (2022). Killer yeast isolated from some foods and its biological activity. Food Science and Technology, 42, e119721.
  • Yener, B. (2006). Determination of Antimicrobial Spectrum of K9 type killer toxin and its cell killing activity. Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye. “(in Turkish)”
  • Zhong, V., Ketchum, N., Mackenzie, J. K., Garcia, X., Rowley, P. A. (2024). Inhibition of diastatic yeasts by Saccharomyces killer toxins to prevent hyperattenuation during brewing. Applied and Environmental Microbiology, 90(10), e01072-24.
There are 66 citations in total.

Details

Primary Language English
Subjects Food Microbiology
Journal Section Review Article
Authors

Hüseyin Öztürk 0000-0002-3774-3233

Submission Date August 20, 2025
Acceptance Date November 3, 2025
Early Pub Date December 2, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: Special

Cite

APA Öztürk, H. (2025). Killer Yeast as a Novel Tool in Biotechnology: Advances in Targeted Antimicrobial Strategies. International Journal of Agriculture Environment and Food Sciences, 9(Special), 247-255. https://doi.org/10.31015/2025.si.11

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27