Review Article
BibTex RIS Cite

Interactions Between Various Classes of Pesticides and Microplastics

Year 2025, Volume: 9 Issue: Special, 321 - 327, 28.12.2025
https://doi.org/10.31015/2025.si.31

Abstract

Microplastics (MPs) are now recognized as ubiquitous in both aquatic and terrestrial ecosystems, where they interact with a diverse range of agrochemicals, including pesticides from multiple chemical classes. The interactions between microplastics and pesticides, encompassing sorption/desorption, environmental fate, transport, bioaccumulation, and toxicity, are dictated by the physicochemical properties of both the plastic and pesticide molecules, and are further affected by environmental conditions. This report synthesizes current findings on the interactions among the five primary classes of synthetic pesticides (neonicotinoids, organophosphates, pyrethroids, carbamates, and organochlorines) and microplastics, clarifying the underlying mechanisms, class-specific differences, and implications for environmental persistence and ecotoxicological risk.

References

  • Agboola, O. D., & Benson, N. U. (2021). Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review. Frontiers in Environmental Science, 9, 678574. https://doi.org/10.3389/FENVS.2021.678574/FULL
  • Albendín, M. G., Aranda, V., Coello, M. D., González-Gómez, C., Rodríguez-Barroso, R., Quiroga, J. M., & Arellano, J. M. (2021). Pharmaceutical Products and Pesticides Toxicity Associated with Microplastics (Polyvinyl Chloride) in Artemia salina. International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 10773, 18(20), 10773. https://doi.org/10.3390/IJERPH182010773
  • Alimi, O. S., Farner Budarz, J., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environmental Science and Technology, 52(4), 1704–1724. https://doi.org/10.1021/ACS.EST.7B05559
  • Anderson, J. C., Dubetz, C., & Palace, V. P. (2015). Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects. Science of The Total Environment, 505, 409–422. https://doi.org/10.1016/J.SCITOTENV.2014.09.090
  • Bakir, A., Rowland, S. J., & Thompson, R. C. (2012). Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin, 64(12), 2782–2789. https://doi.org/10.1016/J.MARPOLBUL.2012.09.010
  • Bhuyan, M. S. (2022). Effects of Microplastics on Fish and in Human Health. Frontiers in Environmental Science, 10, 827289. https://doi.org/10.3389/FENVS.2022.827289/FULL
  • Borsuah, J. F., Messer, T. L., Snow, D. D., Comfort, S. D., & Mittelstet, A. R. (2020). Literature Review: Global Neonicotinoid Insecticide Occurrence in Aquatic Environments. Water 2020, Vol. 12, Page 3388, 12(12), 3388. https://doi.org/10.3390/W12123388
  • Cech, R., Zaller, J. G., Lyssimachou, A., Clausing, P., Hertoge, K., & Linhart, C. (2023). Pesticide drift mitigation measures appear to reduce contamination of non-agricultural areas, but hazards to humans and the environment remain. Science of The Total Environment, 854, 158814. https://doi.org/10.1016/J.SCITOTENV.2022.158814
  • Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS PublicationsA Chamas, H Moon, J Zheng, Y Qiu, T Tabassum, JH Jang, M Abu-Omar, SL Scott, S SuhACS Sustainable Chemistry & Engineering, 2020•ACS Publications, 8(9), 3494–3511. https://doi.org/10.1021/ACSSUSCHEMENG.9B06635
  • Chen, W., Dong, L., Tan, Q., Yi, G., Zhang, F., Luo, J., Mei, Y., Jiang, W., & Li, X. (2023). An adjuvant that increases the adhesion of pesticides on plant surfaces and improves the efficiency of pest control: Polyethylene glycol sol-gel polymer. Reactive and Functional Polymers, 192, 105722. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2023.105722
  • de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405–1416. https://doi.org/10.1111/GCB.14020
  • Ding, T., Wei, L., Hou, Z., Li, J., Zhang, C., & Lin, D. (2022a). Microplastics altered contaminant behavior and toxicity in natural waters. Journal of Hazardous Materials, 425, 127908. https://doi.org/10.1016/J.JHAZMAT.2021.127908
  • Ding, T., Wei, L., Hou, Z., Li, J., Zhang, C., & Lin, D. (2022b). Microplastics altered contaminant behavior and toxicity in natural waters. Journal of Hazardous Materials, 425, 127908. https://doi.org/10.1016/J.JHAZMAT.2021.127908
  • Dissanayake, P. D., Kim, S., Sarkar, B., Oleszczuk, P., Sang, M. K., Haque, M. N., Ahn, J. H., Bank, M. S., & Ok, Y. S. (2022a). Effects of microplastics on the terrestrial environment: A critical review. Environmental Research, 209, 112734. https://doi.org/10.1016/J.ENVRES.2022.112734
  • Felten, V., Toumi, H., Masfaraud, J. F., Billoir, E., Camara, B. I., & Férard, J. F. (2020). Microplastics enhance Daphnia magna sensitivity to the pyrethroid insecticide deltamethrin: Effects on life history traits. Science of The Total Environment, 714, 136567. https://doi.org/10.1016/J.SCITOTENV.2020.136567
  • Fu, X., Pan, X., Chen, J., Zhang, M., Ye, Z., & Yu, X. (2025). Characterization of the Differences in Dissolved Organic Matter (DOM) Adsorbed on Five Kinds of Microplastics Using Multiple Methods. Molecules 2025, Vol. 30, Page 1586, 30(7), 1586. https://doi.org/10.3390/MOLECULES30071586
  • Genuis, S. J., Lane, K., & Birkholz, D. (2016). Human Elimination of Organochlorine Pesticides: Blood, Urine, and Sweat Study. BioMed Research International, 2016, 1624643. https://doi.org/10.1155/2016/1624643
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/sciadv.1700782
  • Gong, X., Ma, J., He, Y., Dong, Y., Tong, Y., Mao, J., Li, M., Wang, D., & Gong, Z. (2025). UV aging and soil organic matter co-regulate the adsorption of organophosphate flame retardants on PVC and PS: Kinetics and mechanisms. Journal of Hazardous Materials, 496, 139266. https://doi.org/10.1016/J.JHAZMAT.2025.139266
  • Hladik, M. L., & Kuivila, K. M. (2012). Pyrethroid insecticides in bed sediments from urban and agricultural streams across the United States. Journal of Environmental Monitoring, 14(7), 1838–1845. https://doi.org/10.1039/C2EM10946H
  • Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017a). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment, 586, 127–141. https://doi.org/10.1016/J.SCITOTENV.2017.01.190
  • Hu, M., Huang, L., Wang, Y., Tan, H., & Yu, X. (2023). Insight into the effect of microplastics on the adsorption and degradation behavior of thiamethoxam in agricultural soils. Chemosphere, 337, 139262. https://doi.org/10.1016/J.CHEMOSPHERE.2023.139262
  • Hu, M., Ma, H., & Xing, B. (2024). Identification of the degree of aging and adsorption behaviors of the naturally aged microplastics. Chemosphere, 367. https://doi.org/10.1016/j.chemosphere.2024.143585
  • Huvet, A., Frère, L., Lacroix, C., Rinnert, E., Lambert, C., & Paul-Pont. (2025). Microplastics as sorption materials of herbicides, persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in a coastal bay. Regional Studies in Marine Science, 89, 104279. https://doi.org/10.1016/J.RSMA.2025.104279
  • Isin, S., & Yildirim, I. (2007). Fruit-growers’ perceptions on the harmful effects of pesticides and their reflection on practices: The case of Kemalpasa, Turkey. Crop Protection, 26(7), 917–922. https://doi.org/10.1016/J.CROPRO.2006.08.006
  • Jadhav, B., & Medyńska-Juraszek, A. (2024). Microplastic and Nanoplastic in Crops: Possible Adverse Effects to Crop Production and Contaminant Transfer in the Food Chain. Plants 2024, Vol. 13, Page 2526, 13(17), 2526. https://doi.org/10.3390/PLANTS13172526
  • Jia, Q., Cai, Y., Yuan, X., Zhang, X., Li, B., & Li, B. (2023). Spatial distribution and ecological risks of neonicotinoid insecticides for an urban tidal stream of Guangzhou City, South China. Ecological Indicators, 146, 109836. https://doi.org/10.1016/J.ECOLIND.2022.109836
  • Jiang, J. Q. (2018). Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption, 13, 16–23. https://doi.org/10.1016/J.SPC.2017.11.003Johansen, M. R., Christensen, T. B., Ramos, T. M., & Syberg, K. (2022). A review of the plastic value chain from a circular economy perspective. Journal of Environmental Management, 302, 113975. https://doi.org/10.1016/j.jenvman.2021.113975
  • Ju, H., Yang, X., Osman, R., & Geissen, V. (2023). Effects of microplastics and chlorpyrifos on earthworms (Lumbricus terrestris) and their biogenic transport in sandy soil. Environmental Pollution, 316(Pt 1). https://doi.org/10.1016/j.envpol.2022.120483
  • Ju, H., Yang, X., Tang, D., Osman, R., & Geissen, V. (2024). Pesticide bioaccumulation in radish produced from soil contaminated with microplastics. Science of The Total Environment, 910, 168395. https://doi.org/10.1016/J.SCITOTENV.2023.168395
  • Klingelhöfer, D., Braun, M., Brüggmann, D., & Groneberg, D. A. (2022). Neonicotinoids: A critical assessment of the global research landscape of the most extensively used insecticide. Environmental Research, 213, 113727. https://doi.org/10.1016/J.ENVRES.2022.113727
  • Kumar, S., Ajay, K., Behera, D., Yaseen, A., Karthick, B., Prasad, S., Bhat, S. U., Jehangir, A., & Anoop, A. (2025). Co-occurrence of microplastics and heavy metals in a freshwater lake system in Indian Himalaya: Distribution and influencing factors. Emerging Contaminants, 11(1), 100394. https://doi.org/10.1016/J.EMCON.2024.100394
  • Li, H., Wang, F., Li, J., Deng, S., & Zhang, S. (2021). Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere, 264, 128556. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128556
  • Li, Z., Meng, X., Shi, X., Li, C., & Zhang, C. (2025). Adsorption–Desorption Behaviors of Enrofloxacin and Trimethoprim and Their Interactions with Typical Microplastics in Aqueous Systems. Sustainability (Switzerland), 17(2), 516. https://doi.org/10.3390/SU17020516/S1
  • Liu, S., Fang, S., Xiang, Z., Chen, X., Song, Y., Chen, C., & Ouyang, G. (2021). Combined effect of microplastics and DDT on microbial growth: A bacteriological and metabolomics investigation in Escherichia coli. Journal of Hazardous Materials, 407, 124849. https://doi.org/10.1016/J.JHAZMAT.2020.124849
  • Liu, Y., Liu, Y., Li, Y., Bian, P., Hu, Y., Zhang, J., & Shen, W. (2023). Effects of irrigation on the fate of microplastics in typical agricultural soil and freshwater environments in the upper irrigation area of the Yellow River. Journal of Hazardous Materials, 447, 130766. https://doi.org/10.1016/J.JHAZMAT.2023.130766
  • M. Domingues, P., & Santos, L. (2019). Essential oil of pennyroyal (Mentha pulegium): Composition and applications as alternatives to pesticides—New tendencies. Industrial Crops and Products, 139, 111534. https://doi.org/10.1016/J.INDCROP.2019.111534
  • Menéndez-Pedriza, A., & Jaumot, J. (2020). Interaction of Environmental Pollutants with Microplastics: A Critical Review of Sorption Factors, Bioaccumulation and Ecotoxicological Effects. Toxics 2020, Vol. 8, Page 40, 8(2), 40. https://doi.org/10.3390/TOXICS8020040
  • Muhammad, A., Qian, Z., Li, Y., Lei, X., Iqbal, J., Shen, X., He, J., Zhang, N., Sun, C., & Shao, Y. (2025a). Enhanced bioaccumulation and toxicity of Fenpropathrin by polystyrene nano(micro)plastics in the model insect, silkworm (Bombyx mori). Journal of Nanobiotechnology , 23(1), 1–20. https://doi.org/10.1186/S12951-025-03120-8/FIGURES/9
  • Muhammad, A., Qian, Z., Li, Y., Lei, X., Iqbal, J., Shen, X., He, J., Zhang, N., Sun, C., & Shao, Y. (2025b). Enhanced bioaccumulation and toxicity of Fenpropathrin by polystyrene nano(micro)plastics in the model insect, silkworm (Bombyx mori). Journal of Nanobiotechnology , 23(1), 1–20. https://doi.org/10.1186/S12951-025-03120-8/FIGURES/9
  • Olivero-Verbel, R., Eljarrat, E., & Johnson-Restrepo, B. (2025). Organophosphate ester flame retardants in sediments and marine fish species in Colombia: Occurrence, distribution, and implications for human risk assessment. Marine Pollution Bulletin, 213, 117654. https://doi.org/10.1016/J.MARPOLBUL.2025.117654
  • Parmar, R., Thakur, S., Singh, A., Rajesh, P., Singh, A. K., & Rajpoot, S. (2025). Microplastics: understanding the interaction with the food web and potential health hazards. Journal of Environmental Engineering and Science, 20(4), 278–294. https://doi.org/10.1680/JENES.24.00085
  • Plastics Europe. (2022). Plastics - The Facts 2022.
  • Rai, M., Pant, G., Pant, K., Aloo, B. N., Kumar, G., Singh, H. B., & Tripathi, V. (2023). Microplastic Pollution in Terrestrial Ecosystems and Its Interaction with Other Soil Pollutants: A Potential Threat to Soil Ecosystem Sustainability. Resources 2023, Vol. 12, Page 67, 12(6), 67. https://doi.org/10.3390/RESOURCES12060067
  • Rochman, C. M., Hoh, E., Kurobe, T., & Teh, S. J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 3(1), 1–7. https://doi.org/10.1038/SREP03263;TECHMETA
  • Rodríguez-Cruz, S., Marín-Benito, J. M., Peña, A., Antonio Rodríguez-Liébana, J., & Delgado-Moreno, L. (2023). Interactions of Microplastics with Pesticides in Soils and Their Ecotoxicological Implications. Agronomy 2023, Vol. 13, Page 701, 13(3), 701. https://doi.org/10.3390/AGRONOMY13030701
  • Sánchez-Bayo, F., Goka, K., & Hayasaka, D. (2016). Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Frontiers in Environmental Science, 4(NOV), 225458. https://doi.org/10.3389/FENVS.2016.00071/FULL
  • Sheng, D., Jing, S., He, X., Klein, A.-M., Köhler, H.-R., & Wanger, T. C. (2024). Nano/micro-plastics effects in agricultural landscapes: an overlooked threat to pollination, biological pest control, and food security. Nature Communications , 15(1). https://doi.org/10.1038/s41467-024-52734-3
  • Shilla, D. J., Matiya, D. J., Nyamandito, N. L., Tambwe, M. M., & Quilliam, R. S. (2024). Insecticide tolerance of the malaria vector Anopheles gambiae following larval exposure to microplastics and insecticide. PLOS ONE, 19(12), e0315042. https://doi.org/10.1371/JOURNAL.PONE.0315042
  • Stubbins, A., Zhu, L., Zhao, S., Spencer, R. G. M., & Podgorski, D. C. (2023). Molecular Signatures of Dissolved Organic Matter Generated from the Photodissolution of Microplastics in Sunlit Seawater. Environmental Science & Technology, 57(48), 20097–20106. https://doi.org/10.1021/ACS.EST.1C03592
  • Šunta, U., Prosenc, F., Trebše, P., Bulc, T. G., & Kralj, M. B. (2020). Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil. Chemosphere, 261, 127762. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127762
  • Tang, K. H. D. (2025). Effects of Microplastics on Bioavailability, Persistence and Toxicity of Plant Pesticides: An Agricultural Perspective. Agriculture (Switzerland), 15(4), 356. https://doi.org/10.3390/AGRICULTURE15040356/S1
  • Van Cauwenberghe, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environmental Pollution, 193, 65–70. https://doi.org/10.1016/J.ENVPOL.2014.06.010
  • Varg, J. E., Kunce, W., Outomuro, D., Svanbäck, R., & Johansson, F. (2021). Single and combined effects of microplastics, pyrethroid and food resources on the life-history traits and microbiome of Chironomus riparius. Environmental Pollution, 289, 117848. https://doi.org/10.1016/J.ENVPOL.2021.117848
  • Villegas, L., Cabrera, M., Moulatlet, G. M., & Capparelli, M. (2022). The synergistic effect of microplastic and malathion exposure on fiddler crab Minuca ecuadoriensis microplastic bioaccumulation and survival. Marine Pollution Bulletin, 175, 113336. https://doi.org/10.1016/J.MARPOLBUL.2022.113336
  • Wang, T., Yu, C., Chu, Q., Wang, F., Lan, T., & Wang, J. (2020). Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere, 244, 125491. https://doi.org/10.1016/J.CHEMOSPHERE.2019.125491
  • Wang, Y., Liu, C., Wang, F., & Sun, Q. (2022). Behavior and mechanism of atrazine adsorption on pristine and aged microplastics in the aquatic environment: Kinetic and thermodynamic studies. Chemosphere, 292, 133425. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133425
  • Wu, C., Pan, S., Shan, Y., Ma, Y., Wang, D., Song, X., Hu, H., Ren, X., Ma, X., Cui, J., & Ma, Y. (2022). Microplastics mulch film affects the environmental behavior of adsorption and degradation of pesticide residues in soil. Environmental Research, 214, 114133. https://doi.org/10.1016/J.ENVRES.2022.114133
  • Xu, J., Wang, L., & Sun, H. (2021). Adsorption of neutral organic compounds on polar and nonpolar microplastics: Prediction and insight into mechanisms based on pp-LFERs. Journal of Hazardous Materials, 408, 124857. https://doi.org/10.1016/J.JHAZMAT.2020.124857
  • Yilimulati, M., Wang, L., Ma, X., Yang, C., & Habibul, N. (2021). Adsorption of ciprofloxacin to functionalized nano-sized polystyrene plastic: Kinetics, thermochemistry and toxicity. Science of The Total Environment, 750, 142370. https://doi.org/10.1016/J.SCITOTENV.2020.142370
  • Yuan-qing, B., Yuan, K., Yong, Z., Jin-yan, W., & Zheng-jun, S. (2014). Pollution of Chemical Pesticides on Environment and Suggestion for Prevention and Control Countermeasures. Journal of Agricultural Science & Technology (1008-0864), 16(2), 19–25. https://doi.org/10.13304/J.NYKJDB.2014.129
  • Zhang, H., Wang, J., Zhou, B., Zhou, Y., Dai, Z., Zhou, Q., Chriestie, P., & Luo, Y. (2018). Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environmental Pollution, 243, 1550–1557. https://doi.org/10.1016/J.ENVPOL.2018.09.122
  • Zhang, S., Han, B., Sun, Y., & Wang, F. (2020). Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials, 388, 121775. https://doi.org/10.1016/J.JHAZMAT.2019.121775
  • Zhou, J., Wen, Y., Cheng, H., Zang, H., & Jones, D. L. (2022). Simazine degradation in agroecosystems: Will it be affected by the type and amount of microplastic pollution? Land Degradation & Development, 33(7), 1128–1136. https://doi.org/10.1002/LDR.4243
  • Ziccardi, L. M., Edgington, A., Hentz, K., Kulacki, K. J., & Kane Driscoll, S. (2016). Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state‐of‐the‐science review. Environmental Toxicology and Chemistry, 35(7), 1667–1676. https://doi.org/10.1002/ETC.3461
There are 65 citations in total.

Details

Primary Language English
Subjects Environmental Assessment and Monitoring
Journal Section Review Article
Authors

Özlem Demirci 0000-0001-9511-2010

Submission Date October 28, 2025
Acceptance Date December 5, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: Special

Cite

APA Demirci, Ö. (2025). Interactions Between Various Classes of Pesticides and Microplastics. International Journal of Agriculture Environment and Food Sciences, 9(Special), 321-327. https://doi.org/10.31015/2025.si.31

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27