Review Article
BibTex RIS Cite

Sustainability and Resource Optimization Vertical Farming Systems: Emerging Technological Paradigms

Year 2025, Volume: 9 Issue: Special, 378 - 389, 28.12.2025
https://doi.org/10.31015/2025.si.36

Abstract

This study aims to reveal current trends related to sustainability, resource optimization, and technological innovations in vertical farming systems by analyzing and evaluating recent studies on this subject. According to the general results emerging from the research, vertical farming provides high efficiency in water and land use but exhibits significant limitations in terms of energy consumption and economic feasibility. The efficient use of LED lighting, HVAC (Heating, Ventilation, and Air Conditioning) systems, and renewable energy integration stand out as key strategies for reducing environmental impacts. IoT, digital twin, and artificial intelligence-based control systems strengthen the automation of production processes and optimize resource utilization. It is observed that social sustainability, consumer acceptance, and economic feasibility dimensions are addressed only to a limited extent in the literature. Overall, vertical farming is evaluated as an innovative production model that combines energy transition, resource circularity, and urban sustainability.

References

  • Abdullah, M. J., Zhang, Z., & Matsubae, K. (2021). Potential for food self-sufficiency improvements through indoor and vertical farming in the Gulf Cooperation Council: Challenges and opportunities from the case of Kuwait. Sustainability, 13(22), 12553. https://doi.org/10.3390/su132212553
  • Agati, G., Franchetti, B., Rispoli, F., & Venturini, P. (2024). Thermo-fluid dynamic analysis of the air flow inside an indoor vertical farming system. Applied Thermal Engineering, 236, 121553. https://doi.org/10.1016/j.applthermaleng.2023.121553
  • Al-Kodmany, K. (2018). The vertical farm: A review of developments and implications for the vertical city. Buildings, 8(2), 24. https://doi.org/10.3390/buildings8020024
  • Alvari, Y., Zandi, M., Jahangiri, A., Ameri, M., Gholami, A., Shahidi, P., & Mousavi, S. A. (2025). BIPV-driven smart vertical greenhouses: a water energy food environment nexus framework for sustainable urban agriculture. Energy Nexus, 100473. https://doi.org/10.1016/j.nexus.2025.100473
  • Arabzadeh, V., Miettinen, P., Kotilainen, T., Herranen, P., Karakoc, A., Kummu, M., & Rautkari, L. (2023). Urban vertical farming with a large wind power share and optimised electricity costs. Applied Energy, 331, 120416. https://doi.org/10.1016/j.apenergy.2022.120416
  • Ares, G., Ha, B., & Jaeger, S. R. (2021). Consumer attitudes to vertical farming (indoor plant factory with artificial lighting) in China, Singapore, UK, and USA: A multi-method study. Food Research International, 150, 110811. https://doi.org/10.1016/j.foodres.2021.110811
  • Avgoustaki, D. D., & Xydis, G. (2020). Indoor vertical farming in the urban nexus context: Business growth and resource savings. Sustainability, 12(5), 1965. https://doi.org/10.3390/su12051965
  • Avgoustaki, D. D., Vevelakis, V., Akrivopoulou, K., Kalogeropoulos, S., & Bartzanas, T. (2025). Examination of interrupted lighting schedule in indoor vertical farms. AgriEngineering, 7(8), 242. https://doi.org/10.3390/agriengineering7080242
  • Bao, Y., Leung, M. K., Poon, D., & Xiang, C. (2024). Integrating vertical farm into low-carbon high-rise building in high-density context: A design case study in Hong Kong. Journal of Building Engineering, 96, 110472. https://doi.org/10.1016/j.jobe.2024.110472
  • Baumont de Oliveira, F. J., Ferson, S., Dyer, R. A., Thomas, J. M., Myers, P. D., & Gray, N. G. (2022). How high is high enough? Assessing financial risk for vertical farms using imprecise probability. Sustainability, 14(9), 5676. https://doi.org/10.3390/su14095676
  • Barbieri, F., Barbi, S., Bertacchini, A., & Montorsi, M. (2023). Combined effects of different LED light recipes and slow-release fertilizers on baby leaf lettuce growth for vertical farming: Modeling through DoE. Applied Sciences, 13(15), 8687. https://doi.org/10.3390/app13158687
  • Blom, T., Jenkins, A., Pulselli, R. M., & Van den Dobbelsteen, A. A. J. F. (2022). The embodied carbon emissions of lettuce production in vertical farming, greenhouse horticulture, and open-field farming in the Netherlands. Journal of Cleaner Production, 377, 134443. https://doi.org/10.1016/j.jclepro.2022.134443
  • Budavári, N., Pék, Z., Helyes, L., Takács, S., & Nemeskeri, E. (2024). An overview on the use of artificial lighting for sustainable lettuce and microgreens production in an indoor vertical farming system. Horticulturae, 10(9), 938. https://doi.org/10.3390/horticulturae10090938
  • Bukhtoyarov, V. V., Nekrasov, I. S., Timofeenko, I. A., Gorodov, A. A., Kartushinskii, S. A., Trofimov, Y. V., & Lishik, S. I. (2025). Hybrid digital twin for phytotron microclimate control: Integrating physics-based modeling and IoT sensor networks. AgriEngineering, 7(9), 285. https://doi.org/10.3390/agriengineering7090285
  • Burritt, M., Valle de Souza, S., & Peterson, H. C. (2025). When will controlled environment agriculture in its vertical form fulfill its potential? Sustainability, 17(7), 2957. https://doi.org/10.3390/su17072957
  • Buscher, J., Bakunowitsch, J., & Specht, K. (2023). Transformative potential of vertical farming—an urban planning investigation using multi-level perspective. Sustainability, 15(22), 15861. https://doi.org/10.3390/su152215861
  • Carotti, L., Pistillo, A., Zauli, I., Pennisi, G., Martin, M., Gianquinto, G., & Orsini, F. (2024). Far-red radiation management for lettuce growth: Physiological and morphological features leading to energy optimization in vertical farming. Scientia Horticulturae, 334, 113264. https://doi.org/10.1016/j.scienta.2024.113264
  • Carrasco, G., Fuentes-Peñailillo, F., Manríquez, P., Rebolledo, P., Vega, R., Gutter, K., & Urrestarazu, M. (2024). Enhancing leafy greens’ production: Nutrient film technique systems and automation in container-based vertical farming. Agronomy, 14(9), 1932. https://doi.org/10.3390/agronomy14091932
  • Cavallo, A. C., Parkes, M., Teixeira, R. F. M., & Righi, S. (2025). Life cycle assessment of land use trade-offs in indoor vertical farming. Applied Sciences, 15(15), 8429. https://doi.org/10.3390/app15158429
  • Chatterjee, A., Ghosh, P., Winkler, B., Vijayaragavan, V., Debnath, S., Cichocki, J., Trenkner, M., Vanicela, B., Riethmueller, C., Walz, M., Chandra, S., & Pal, H. (2025). Demystifying the integration of hydroponics cultivation system reinforcing bioeconomy and sustainable agricultural growth. Scientia Horticulturae, 341, 113973. https://doi.org/10.1016/j.scienta.2025.113973
  • Chiaranunt, P., & White, J. F. (2023). Plant beneficial bacteria and their potential applications in vertical farming systems. Plants, 12(2), 400. https://doi.org/10.3390/plants12020400
  • Cichocki, J., von Cossel, M., & Winkler, B. (2022). Techno-economic assessment of an office-based indoor farming unit. Agronomy, 12(12), 3182. https://doi.org/10.3390/agronomy12123182
  • Cossu, M., Tiloca, M. T., Cossu, A., Deligios, P. A., Pala, T., & Ledda, L. (2023). Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce. Applied Energy, 344, 121278. https://doi.org/10.1016/j.apenergy.2023.121278
  • Csambalik, L., Gál, I., Madaras, K., Tóbiás, A., & Pusztai, P. (2024). Beyond efficiency: The social and ecological costs of plant factories in urban farming: A review. Urban Science, 8(4), 210. https://doi.org/10.3390/urbansci8040210
  • D-Andrade, L., Escalante-Garcia, N., Olvera-Gonzalez, E., Orsini, F., Pennisi, G., de Luna, F. V., Silos-Espino, H., & Najera, C. (2025). Intercropping lettuce with alfalfa under variable nitrate supply: Effects on growth performance and nutrient dynamics in a vertical hydroponic system. Plants, 14(13), 2060. https://doi.org/10.3390/plants14132060
  • Daniels, A., Fink, M., & Wollherr, D. (2024). Hierarchical model-based irrigation control for vertical farms. IFAC-PapersOnLine, 58(7), 472-477. https://doi.org/10.1016/j.ifacol.2024.08.107
  • De Donno, A., Tagliafico, L. A., & Bagnerini, P. (2025). Innovation in vertical farming: A model-based energy assessment and performance comparison of adaptive versus standard systems. Sustainability, 17(18), 8319. https://doi.org/10.3390/su17188319
  • Dhawi, F. (2023). The role of plant growth-promoting microorganisms (PGPMs) and their feasibility in hydroponics and vertical farming. Metabolites, 13(2), 247. https://doi.org/10.3390/metabo13020247
  • Didenko, N., Skripnuk, D., Ilin, I., Cherenkov, V., Tanichev, A., & Kulik, S. V. (2021). An economic model of sustainable development in the Russian Arctic: the idea of building vertical farms. Agronomy, 11(9), 1863. https://doi.org/10.3390/agronomy11091863
  • Dsouza, A., Price, G. W., Dixon, M., & Graham, T. (2021). A conceptual framework for incorporation of composting in closed-loop urban controlled environment agriculture. Sustainability, 13(5), 2471. https://doi.org/10.3390/su13052471
  • Erekath, S., Seidlitz, H., Schreiner, M., & Dreyer, C. (2024). Food for future: Exploring cutting-edge technology and practices in vertical farm. Sustainable Cities and Society, 106, 105357. https://doi.org/10.1016/j.scs.2024.105357
  • Espitia, J. J., Amado, G., Rodriguez, J., Gomez, L., Gil, R., Flores-Velasquez, J., Baeza, E., Aguilar, C. E., Akrami, M., Arias, L. A., & Villagran, E. (2025). CO2 enrichment in protected agriculture: A bibliometric review on greenhouses, controlled environment systems, and vertical farms: Part 1. Horticulturae, 11(5), 476. https://doi.org/10.3390/horticulturae11050476
  • Food and Agriculture Organization of the United Nations (FAO). (2021). The state of the world’s land and water resources for food and agriculture – Systems at breaking point (SOLAW 2021). Rome: Author. https://doi.org/10.4060/cb9910en
  • Food and Agriculture Organization of the United Nations (FAO). (2023). The State of Food and Agriculture 2023. Revealing the true cost of food to transform agrifood systems. Rome: Author. https://doi.org/10.4060/cc7724en
  • Fevgas, G., Lagkas, T., Papadopoulos, P., Sarigiannidis, P., & Argyriou, V. (2025). Integrating thermal infrared and RGB imaging for early detection of water stress in lettuces with comparative analysis of IoT sensors. Smart Agricultural Technology, 11, 100881. https://doi.org/10.1016/j.atech.2025.100881
  • Food Security Information Network (FSIN), Global Network Against Food Crises (GNAFC), & IPC Global Initiative. (2025). Global report on food crises 2025: September update. Rome: FSIN and GNAFC. https://www.fsinplatform.org/grfc-2025-september-update-full-report
  • Fussy, A., & Papenbrock, J. (2022). An overview of soil and soilless cultivation techniques: chances, challenges and the neglected question of sustainability. Plants, 11(9), 1153. https://doi.org/10.3390/plants11091153
  • Gao, P., Xiao, S., & Mustapa, F. D. (2025). A comprehensive review of urban agriculture in a changing climate: Technological innovations and policy frameworks. Climate Risk Management, 100732. https://doi.org/10.1016/j.crm.2025.100732
  • Gargaro, M., Hastings, A., Murphy, R. J., & Harris, Z. M. (2024). A cradle-to-customer life cycle assessment case study of UK vertical farming. Journal of Cleaner Production, 470, 143324. https://doi.org/10.1016/j.jclepro.2024.143324
  • Gunapala, R., Gangahagedara, R., Wanasinghe, W. C. S., Samaraweera, A. U., Gamage, A., Rathnayaka, C., Hameed, Z., Abdel Baki, Z., Madhujith, T., & Merah, O. (2025). Urban agriculture: A strategic pathway to building resilience and ensuring sustainable food security in cities. Farming System, 100150. https://doi.org/10.1016/j.farsys.2025.100150
  • Helberg, J., Klöcker, M., Sabantina, L., Storck, J. L., Böttjer, R., Brockhagen, B., Kinzel, F., Rattenholl, A., & Ehrmann, A. (2019). Growth of Pleurotus ostreatus on different textile materials for vertical farming. Materials, 12(14), 2270. https://doi.org/10.3390/ma12142270
  • Hosseini, H., Mozafari, V., Roosta, H. R., Shirani, H., van de Vlasakker, P. C., & Farhangi, M. (2021). Nutrient use in vertical farming: Optimal electrical conductivity of nutrient solution for growth of lettuce and basil in hydroponic cultivation. Horticulturae, 7(9), 283. https://doi.org/10.3390/horticulturae7090283
  • Hwang, Y., Lee, S., Kim, T., Baik, K., & Choi, Y. (2022). Crop growth monitoring system in vertical farms based on region-of-interest prediction. Agriculture, 12(5), 656. https://doi.org/10.3390/agriculture12050656
  • Intergovernmental Panel on Climate Change (IPCC). (2022). Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009325844
  • Jaeger, S. R., Chheang, S. L., & Ares, G. (2022). Text highlighting as a new way of measuring consumers' attitudes: A case study on vertical farming. Food Quality and Preference, 95, 104356. https://doi.org/10.1016/j.foodqual.2021.104356
  • Jaeger, S. R., Chheang, S. L., Roigard, C. M., & Frøst, M. B. (2023). Consumers' expectations and experiences of salad greens, herbs, and fruits from vertical farming: Comparison with organic produce. Food Quality and Preference, 112, 105020. https://doi.org/10.1016/j.foodqual.2023.105020
  • Jeon, Y. J., Hong, S., Lee, T. S., Park, S. H., Song, G., Seo, M. G., Lee, J., Lim, Y., An, J.-T., Lee, S., Jeong, H.-Y., Park, S. J., Lee, C., Jung, D.-H., & Kwon, C.T. (2025).Volumetric deep learning-based precision phenotyping of gene-edited tomato for vertical farming. Plant Phenomics, 100095. https://doi.org/10.1016/j.plaphe.2025.100095
  • Jones, A., Naroju, S. P., Nandwani, D., Witcher, A., & Chowdhary, S. (2025). Impact of nitrogen fertilizer application rates on plant growth and yield of organic kale and swiss chard in vertical farming system. Horticulturae, 11(7), 827. https://doi.org/10.3390/horticulturae11070827
  • Jürkenbeck, K., Heumann, A., & Spiller, A. (2019). Sustainability matters: Consumer acceptance of different vertical farming systems. Sustainability, 11(15), 4052. https://doi.org/10.3390/su11154052
  • Kabir, M. S. N., Reza, M. N., Chowdhury, M., Ali, M., Samsuzzaman, Ali, M. R., Lee, K. Y., & Chung, S.-O. (2023). Technological trends and engineering issues on vertical farms: a review. Horticulturae, 9(11), 1229. https://doi.org/10.3390/horticulturae9111229
  • Kang, L., & van Hooff, T. (2025). On the improvement of air distribution performance in a vertical farm: Impact of airflow rate and baffles. Thermal Science and Engineering Progress, 103842. https://doi.org/10.1016/j.tsep.2025.103842
  • Kang, L., Zhang, Y., Kacira, M., & van Hooff, T. (2024). CFD simulation of air distributions in a small multi-layer vertical farm: Impact of computational and physical parameters. Biosystems Engineering, 243, 148-174. https://doi.org/10.1016/j.biosystemseng.2024.05.004
  • Karimzadeh, S., Daccache, A., Rulli, M. C., & Ahamed, M. S. (2025). Global water-nutrient-salinity-energy nexus in lettuce production: from open-field irrigation to closed-loop hydroponics in greenhouses. Journal of Agriculture and Food Research, 101935. https://doi.org/10.1016/j.jafr.2025.101935
  • Kernbach, S. (2024). Biofeedback-based closed-loop phytoactuation in vertical farming and controlled-environment agriculture. Biomimetics, 9(10), 640. https://doi.org/10.3390/biomimetics9100640
  • Kolagar, M. (2019). Adherence to urban agriculture in order to reach sustainable cities: a BWM–WASPAS approach. Smart Cities, 2(1), 31–45. https://doi.org/10.3390/smartcities2010003
  • Lahlou, F. Z., Mahmood, F., & Al-Ansari, T. (2025). Economic assessment of greenhouse and vertical farm production systems in arid regions: a case study of Qatar. Cleaner and Circular Bioeconomy, 100151. https://doi.org/10.1016/j.clcb.2025.100151
  • Lakhiar, I. A., Yan, H., Syed, T. N., Zhang, C., Shaikh, S. A., Rakibuzzaman, M., & Vistro, R. B. (2025). Soilless agricultural systems: Opportunities, challenges, and applications for enhancing horticultural resilience to climate change and urbanization. Horticulturae, 11(6), 568. https://doi.org/10.3390/horticulturae11060568
  • Lee, J., Lim, E., Byun, N., & Shon, D. (2024). Eco-friendly technology derivation and planning for rooftop greenhouse smart farm. Buildings, 14(2), 398. https://doi.org/10.3390/buildings14020398
  • Maier, C. R., Chen, Z.-H., Cazzonelli, C. I., Tissue, D. T., & Ghannoum, O. (2022). Precise phenotyping for improved crop quality and management in protected cropping: A review. Crops, 2(4), 336–350. https://doi.org/10.3390/crops2040024
  • Martin, M., & Molin, E. (2019). Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability, 11(15), 4124. https://doi.org/10.3390/su11154124
  • Miserocchi, L., & Franco, A. (2024). Benchmarking energy efficiency in vertical farming: Status and prospects. Thermal Science and Engineering Progress, 103165. https://doi.org/10.1016/j.tsep.2024.103165
  • Morella, P., Lambán, M. P., Royo, J., & Sánchez, J. C. (2023). Vertical farming monitoring: How does it work and how much does it cost? Sensors, 23(7), 3502. https://doi.org/10.3390/s23073502
  • Najera, C., Gallegos-Cedillo, V. M., Ros, M., & Pascual, J. A. (2023). Role of spectrum light on productivity and plant quality over vertical farming systems: Bibliometric analysis. Horticulturae, 9(1), 63. https://doi.org/10.3390/horticulturae9010063
  • Nwanojuo, M. A., Anumudu, C. K., & Onyeaka, H. (2025). Impact of controlled environment agriculture (CEA) in Nigeria: A review of the future of farming in Africa. Agriculture, 15(2), 117. https://doi.org/10.3390/agriculture15020117
  • Organisation for Economic Co-operation and Development (OECD), & Food and Agriculture Organization of the United Nations (FAO). (2025). OECD-FAO Agricultural Outlook 2025–2034. Paris https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2025-2034_601276cd-en.html
  • Ojo, M. O., & Zahid, A. (2022). Deep learning in controlled environment agriculture: A review of recent advancements, challenges and prospects. Sensors, 22(20), 7965. https://doi.org/10.3390/s22207965
  • Park, J.-Y., Yoo, Y.-J., & Kim, Y.-C. (2023). Optimization of the outlet shape of an air circulation system for reduction of indoor temperature difference. Sensors, 23(5), 2570. https://doi.org/10.3390/s23052570
  • Parkes, M. G., Cubillos Tovar, J. P., Dourado, F., Domingos, T., & Teixeira, R. F. (2022). Life cycle assessment of a prospective technology for building-integrated production of broccoli microgreens. Atmosphere, 13(8), 1317. https://doi.org/10.3390/atmos13081317
  • Paucek, I., Appolloni, E., Pennisi, G., Quaini, S., Gianquinto, G., & Orsini, F. (2020). LED lighting systems for horticulture: Business growth and global distribution. Sustainability, 12(18), 7516. https://doi.org/10.3390/su12187516
  • Pelella, F., Viscito, L., Napoli, G., Tariello, F., Pantaleo, A. M., Cabeza, L. F., & Mauro, A. W. (2025). Thermo-economic optimization of vertical farms exploring multiple design options for the built environment and HVAC system. Applied Thermal Engineering, 127623. https://doi.org/10.1016/j.applthermaleng.2025.127623
  • Pereira, J., & Gomes, M. G. (2025). Lighting strategies in vertical urban farming for enhancement of plant productivity and energy consumption. Applied Energy, 377, 124669. https://doi.org/10.1016/j.apenergy.2024.124669
  • Rathor, A. S., Choudhury, S., Sharma, A., Nautiyal, P., & Shah, G. (2024). Empowering vertical farming through IoT and AI-Driven technologies: A comprehensive review. Heliyon, 10(15). https://doi.org/10.1016/j.heliyon.2024.e34998
  • Rivera, X. S., Rodgers, B., Odanye, T., Jalil-Vega, F., & Farmer, J. (2023). The role of aeroponic container farms in sustainable food systems: The environmental credentials. Science of the Total Environment, 860, 160420. https://doi.org/10.1016/j.scitotenv.2022.160420
  • Roth, T., Mazzadi, S., Pulsipher, J. L., & Ricardez-Sandoval, L. (2025). Enhancing sustainable agriculture through optimized polyculture hydroponic operating strategies. Chemical Engineering and Processing: Process Intensification, 110446. https://doi.org/10.1016/j.cep.2025.110446
  • Rumiantsev, B., Dzhatdoeva, S., Zotov, V., & Kochkarov, A. (2023). Analysis of the potato vegetation stages based on the dynamics of water consumption in the closed urban vertical farm with automated microclimate control. Agronomy, 13(4), 954. https://doi.org/10.3390/agronomy13040954
  • Ryu, J. H., Subah, Z., & Baek, J. (2023). An application of system dynamics to characterize crop production for autonomous indoor farming platforms (AIFP). Horticulturae, 9(12), 1318. https://doi.org/10.3390/horticulturae9121318
  • Schulman, B., Blake, J. T., & Donald, R. (2023). A production capacity investment decision-making tool for the indoor vertical farming industry. Smart Agricultural Technology, 5, 100244. https://doi.org/10.1016/j.atech.2023.100244
  • Shadd, A., Asgari, N., & Pearce, J. M. (2025). Effects of spectral ranges on growth and yield in vertical hydroponic–aeroponic hybrid grow systems for radishes and turnips. Foods, 14(11), 1872. https://doi.org/10.3390/foods14111872
  • Shah, F., & Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11(5), 1485. https://doi.org/10.3390/su11051485
  • Shao, Y., Wang, Z., Zhou, Z., Chen, H., Cui, Y., & Zhou, Z. (2022). Determinants affecting public intention to use micro-vertical farming: A survey investigation. Sustainability, 14(15), 9114. https://doi.org/10.3390/su14159114
  • Sharkey, A., Altman, A., Cohen, A. R., Groh, T., Igou, T. K. S., Ferrarezi, R. S., & Chen, Y. (2024). Modeling Bibb lettuce nitrogen uptake and biomass productivity in vertical hydroponic agriculture. Agriculture, 14(8), 1358. https://doi.org/10.3390/agriculture14081358
  • Shasteen, K. C., & Kacira, M. (2023). Predictive modeling and computer vision-based decision support to optimize resource use in vertical farms. Sustainability, 15(10), 7812. https://doi.org/10.3390/su15107812
  • Shen, J., Hong, T. S., Fan, L., Zhao, R., Mohd Ariffin, M. K. A. B., & As’ arry, A. B. (2024). Development of an improved GWO algorithm for solving optimal paths in complex vertical farms with multi-robot multi-tasking. Agriculture, 14(8), 1372. https://doi.org/10.3390/agriculture14081372
  • Siñol, A. C., & Martin, M. (2025). Environmental implications of lettuce sourcing: Comparison of sourcing from vertical farms and conventional production. Heliyon, 11(1), e41503. https://doi.org/10.1016/j.heliyon.2024.e41503
  • Siregar, R. R. A., Seminar, K. B., Wahjuni, S., & Santosa, E. (2022). Vertical farming perspectives in support of precision agriculture using artificial intelligence: A review. Computers, 11(9), 135. https://doi.org/10.3390/computers11090135
  • Stanghellini, C., & Katzin, D. (2024). The dark side of lighting: A critical analysis of vertical farms' environmental impact. Journal of Cleaner Production, 458, 142359. https://doi.org/10.1016/j.jclepro.2024.142359
  • Tarr, S. T., Valle de Souza, S., & Lopez, R. G. (2023). Influence of day and night temperature and radiation intensity on growth, quality, and economics of indoor green butterhead and red oakleaf lettuce production. Sustainability, 15(1), 829. https://doi.org/10.3390/su15010829
  • United Nations, Department of Economic and Social Affairs, Population Division (UN DESA). (2024). World population prospects 2024: Summary of results. https://www.un.org/development/desa/pd/content/publications
  • Van Brenk, J. B., Vanderwolk, K. R., Seo, S., Choi, Y. H., Marcelis, L. F., & Verdonk, J. C. (2025). Blue light sonata: Dynamic variation of red:blue ratio during the photoperiod differentially affects leaf photosynthesis, pigments, and growth in lettuce. Plant Physiology and Biochemistry, 223, 109861. https://doi.org/10.1016/j.plaphy.2025.109861
  • Van Gerrewey, T., Boon, N., & Geelen, D. (2021). Vertical farming: The only way is up? Agronomy, 12(1), 2. https://doi.org/10.3390/agronomy12010002
  • Vatistas, C., Avgoustaki, D. D., & Bartzanas, T. (2022). A systematic literature review on controlled-environment agriculture: How vertical farms and greenhouses can influence the sustainability and footprint of urban microclimate with local food production. Atmosphere, 13(8), 1258. https://doi.org/10.3390/atmos13081258
  • Verma, P., Singh, G., Singh, S. K., Bakshi, M., Mirza, A. A., Mehandi, S., & Vijayvargiya, V. (2025). Correlation, path-coefficient and principal component analysis association among quantitative traits in strawberry to unlock potential of vertical farming system. Kuwait Journal of Science, 52(1), 100303. https://doi.org/10.1016/j.kjs.2024.100303
  • Watawana, B., & Isaksson, M. (2022). Design and simulations of a self-assembling autonomous vertical farm for urban farming. Agriculture, 13(1), 112. https://doi.org/10.3390/agriculture13010112
  • Wichitwechkarn, V., Rohde, W., & Choudhary, R. (2023). Design and validation of an open-sourced automation system for vertical farming. HardwareX, 16, e00497. https://doi.org/10.1016/j.ohx.2023.e00497
  • Wong, C. E., Teo, Z. W. N., Shen, L., & Yu, H. (2020). Seeing the lights for leafy greens in indoor vertical farming. Trends in Food Science & Technology, 106, 48-63. https://doi.org/10.1016/j.tifs.2020.09.031
  • Wu, Z., Maga, D., Aryan, V., Reimann, A., Safarpour, T., & Schillberg, S. (2024). A life cycle assessment of protein production from wheatgrass: Optimization potential of a novel vertical farming system. Sustainable Production and Consumption, 51, 105–117. https://doi.org/10.1016/j.spc.2024.08.031
  • Xia, J., & Mattson, N. (2022). Response of common ice plant (Mesembryanthemum crystallinum L.) to photoperiod/daily light integral in vertical hydroponic production. Horticulturae, 8(7), 653. https://doi.org/10.3390/horticulturae8070653
  • Xie, S., Martinez-Vazquez, P., & Baniotopoulos, C. (2024a). Experimental measurements of wind flow characteristics on an ellipsoidal vertical farm. Buildings, 14(11), 3646. https://doi.org/10.3390/buildings14113646
  • Xie, S., Martinez-Vazquez, P., & Baniotopoulos, C. (2024b). Wind flow characteristics on a vertical farm with potential use of energy harvesting. Buildings, 14(5), 1278. https://doi.org/10.3390/buildings14051278
  • Xie, S., Martinez-Vazquez, P., & Baniotopoulos, C. (2025). Life cycle assessment of an urban vertical farm benchmark from construction to dismantling and recycling. Building and Environment, 113729. https://doi.org/10.1016/j.buildenv.2025.113729
  • Zaręba, A., Krzemińska, A., Adynkiewicz-Piragas, M., Stojanovski, T., Jia, H., Privitera, R., & van der Horst, D. (2025). Multifunctional vertical farming systems as a basis for transforming urban food systems amid climate change. Sustainability, 17(19), 8668. https://doi.org/10.3390/su17198668
  • Zhang, H., Asutosh, A., & Hu, W. (2018). Implementing vertical farming at university scale to promote sustainable communities: A feasibility analysis. Sustainability, 10(12), 4429. https://doi.org/10.3390/su10124429
  • Zhang, Y., Chen, T., Gasparri, E., & Lucchi, E. (2025). A modular agrivoltaics building envelope integrating thin-film photovoltaics and hydroponic urban farming systems: A circular design approach with the multi-objective optimization of energy, light, water and structure. Sustainability, 17(2), 666. https://doi.org/10.3390/su17020666
There are 103 citations in total.

Details

Primary Language English
Subjects Agricultural Systems Analysis and Modelling
Journal Section Review Article
Authors

Özlem Altuntaş 0000-0002-6508-7368

Yadigar Leyla Doğan 0000-0002-7404-5653

Submission Date November 13, 2025
Acceptance Date December 22, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: Special

Cite

APA Altuntaş, Ö., & Doğan, Y. L. (2025). Sustainability and Resource Optimization Vertical Farming Systems: Emerging Technological Paradigms. International Journal of Agriculture Environment and Food Sciences, 9(Special), 378-389. https://doi.org/10.31015/2025.si.36

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27