Review Article
BibTex RIS Cite

An Potential Alternative in Sustainable Horticulture: Microalgae

Year 2025, Volume: 9 Issue: Special, 358 - 377, 28.12.2025
https://doi.org/10.31015/2025.si.35

Abstract

The fact that food demand will increase in parallel with the global population growth over the years necessitates maximizing crop yields. There is also increasing interest in biostimulants that can replace conventional methods for this purpose and enable access to healthy food. Among biostimulants, microalgae have the potential to function as environmentally friendly biostimulants that improve product quality and yield. Microalgae are single celled, mostly phototrophic organisms with broad environmental adaptability. Microalgae contain a wide variety of biomolecules, including N-fixing enzymes, soluble AAs, biomineral conjugates, polysaccharides, and phytohormones. The use of microalgae and cyanobacteria in agricultural production, aided by new technological advancements, has been shown to have other positive effects, such as increasing soil fertility, providing resistance to abiotic stress in plants, stimulating defensive responses against pathogens and infections, and improving the uptake of nutrients such as phosphorus (P), potassium (K), N, and minerals from the soil. Therefore, microalgae, including cyanobacteria, are renewable resources with a wide range of applications in agricultural. These products can be very useful in improving agricultural sustainability and even facilitate high production with less environmental impact. For these reasons, microalgae production is an activity that has gained global attention due to its potential economic and commercial opportunities. Microalgae can be produced using wastewater, recovering nutrients and preserving water for later use. This assessment covers the fundamental and applied aspects of microalgae that impact critical agricultural needs. The main purpose of this review is to summarize the modes of action of microalgae-based plant growth additives, their usage methods and recommendations, and the studies conducted on all these subjects.

References

  • Agwa O. K, Chimezie Jason Ogugbue and Enechojo Eunice Williams, (2017). Field Evidence of Chlorella vulgaris Potentials as a Biofertilizer for Hibiscus esculentus. International Journal of Agricultural Research, 12: 181-189.
  • Alam, M. Z., Braun, G., Norrie, J. and Hodges, D. M. (2013). Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can. J. Plant Sci. 93: 23–36
  • Alvarez, Adriana & Weyers, Sharon & Goemann, Hannah & Peyton, Brent & Gardner, Robert. (2021). Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research. 54. 102200. 10.1016/j.algal.2021.102200.
  • Ankit; Bordoloi, N.; Tiwari, J.; Kumar, S.; Korstad, J.; Bauddh, K. (2020). Efficiency of algae for heavy metal removal, bioenergy production, and carbon sequestration. In Emerging Eco-Friendly Green Technologies for Wastewater Treatment; Springer: Singapore; pp. 77–101.
  • Anonim (2025). Regulation (EU) 2019/1009 of the European Parliament and of the Council. (2019). https://eur-lex.europa.eu/eli/reg/2019/1009/oj (accessed 18 December 2025).
  • Arahou, F., Lijassi, I., Wahby, A., Rhazi, L., Arahou, M., and Wahby, I. (2022). Spirulina-based biostimulants for sustainable agriculture: Yield improvement and market trends. Bioenergy Res. 15(1), 1–16. Doi: 10.1007/s12155-022-10537-8
  • Årstøl E, Hohmann-Marriott MF. (2019). Cyanobacterial Siderophores-Physiology, Structure, Biosynthesis, and Applications. Mar Drugs. 10;17(5):281. doi: 10.3390/md17050281. PMID: 31083354; PMCID: PMC6562677.
  • Arthur, G.D., Stirk, W.A., van Staden, J., (2003). Effect of a seaweed concentrate on the growth and yield of three varieties of Capsicum annuum. South Afr. J. Bot. 69 (2), 207–211.
  • Barsanti, L. and Gualtieri, P. (2014) Algae: Anatomy, Biochemistry, and Biotechnology. CRC Press. https://doi.org/10.1201/b16544
  • Barsanti, L., Coltelli, P., & Gualtieri, P. (2019). Paramylon Treatment Improves Quality Profile and Drought Resistance in Solanum lycopersicum L. cv. Micro-Tom. Agronomy, 9(7), 394. https://doi.org/10.3390/agronomy9070394
  • Bayona-Morcillo, P.J., Plaza, B.M., Gómez-Serrano, C. et al. (2020). Effect of the foliar application of cyanobacterial hydrolysate (Arthrospira platensis) on the growth of Petunia x hybrida under salinity conditions. J Appl Phycol 32, 4003–4011 https://doi.org/10.1007/s10811-020-02192-3
  • Becker, E. W. (2013). Microalgae in human and animal nutrition, in Handbook of Microalgal Culture, eds A. Richmond and Q. Hu (Hoboken, NJ: Wiley), 461–503. doi: 10.1002/9781118567166.ch25
  • Bello, A. S., Saadaoui, I., Ahmed, T., Hamdi, H., Cherif, M., & Ben-Hamadou, R. (2022). Evaluation of Roholtiella sp. Extract on Bell Pepper (Capsicum annuum L.) Yield and Quality in a Hydroponic Greenhouse System. Frontiers in plant science, 13, 843465. https://doi.org/10.3389/fpls.2022.843465
  • Bileva T (2013). Influence of Green Algae Chlorella vulgaris on Infested with Xiphinema index Grape Seedlings. J Earth Sci Climate Change 4: 136. DOİ: 10.4172/2157-7617.1000136
  • Biswajit, R (2012). Commercial and industrial applications of micro algae – A review. J. Algal Biomass Utln. 3 (4): 89–100.
  • Bleakley, S., & Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Foods, 6(5), 33. https://doi.org/10.3390/foods6050033
  • Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306. https://doi.org/10.3390/agronomy9060306
  • Bulgari, Roberta & Cocetta, Giacomo & Trivellini, Alice & Vernieri, Paolo & Ferrante, Antonio. (2015). Biostimulants and crop responses: A review. Biological Agriculture and Horticulture. 31. 1-17. 10.1080/01448765.2014.964649.
  • Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2), 3–41. https://doi.org/10.1007/s11104-014-2131-8
  • Chanda, M.-j., Merghoub, N., and El Arroussi, H. (2019). Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? World J. Microbiol. Biotechnol. 35 (11), 1–10. doi: 10.1007/s11274-019-2745-3
  • Chen, D., Shao, Q., Yin, L., Younis, A., and Zheng, B. (2019). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 9, 1945. Doi: 10.3389/fpls.2018.01945
  • Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL Wang HX, Fang EF, Lam SK, Ngai PHK. (2014). Antifungal and Antiviral Products of Marine Organisms. Appl. Microbiol. Biotechnol. 98: 3475–3494. https://doi.org/10.1007/s00253-014-5575-0.
  • Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M. C., & Rouphael, Y. (2018). Renewable sources of plant biostimulation: Microalgae as a sustainable means to improve crop performance. Frontiers in Plant Science, 9, 1782. https://doi.org/10.3389/fpls.2018.01782
  • Clarke B., Friederike O., Stuart-Smith R., Harrington L (2022). Extreme weather impacts of climate change: an attribution perspective. IOP Publishing Environmental Research: Climate (1): 012001.DOİ:10.1088/2752-5295/ac6e7d
  • Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., and Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5:448. doi: 10.3389/fpls.2014.00448
  • Colla, G., Rouphael, Y., Lucini, L., Canaguier, R., Stefanoni, W., Fiorillo, A., et al. (2016). Protein hydrolysate-based biostimulants: origin, biological activity and application methods. Acta Hortic. 1148, 27–34. doi: 10.17660/ActaHortic.2016.1148.3
  • Colombo C., Palumbo G., He J.-Z., Pinton R., Cesco S. (2014). Review on iron availability in soil: Interaction of fe minerals, plants, and microbes. J. Soils Sediments 14 (3), 538–548. doi: 10.1007/s11368-013-0814-z
  • Coppens, J., Grunert, O., Van Den Hende, S. et al. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol 28, 2367–2377 https://doi.org/10.1007/s10811-015-0775-2
  • Costa JA, Freitas BC, Cruz CG, Silveira J, Morais MG. (2019). Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. Journal of Environmental Science and Health, Part B.54 (5) :366-75.
  • Dhaliwal, S.S., Singh, J., Taneja, P.K. et al. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res. 27, 1319–1333 (2020). https://Doi.org/10.1007/s11356-019-06967-1.
  • Dias, G.A.; Rocha, R.H.C.; Araújo, J.L.; Lima, J.F.; Guedes, W.A. (2016). Growth, yield, and postharvest quality in eggplant produced under different foliar fertilizer (Spirulina platensis) treatments. Semina Ciênc. Agrár, 37, 3893–3902.
  • Dineshkumar, R., Subramanian, J., Arumugam, A., Ahamed Rasheeq, A., Sampathkumar, P., (2020). Exploring the microalgae biofertilizer effect on onion cultivation by field experiment. Waste and Biomass Valorization 11, 77–87.
  • Dmytryk, Agnieszka & Chojnacka, Katarzyna. (2018). Algae As Fertilizers, Biostimulants, and Regulators of Plant Growth. 10.1007/978-3-319-74703-3_10.
  • Du Jardin, P. (2015) Plants Biostimulants: Definition, Concept, Main Categories and Regulations. Scientia Horticultura, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021
  • El Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El Mernissi, N., Aafsar, A., et al. (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomatoes (Solanum lycopersicum). J. Appl. Phycology 30 (5), 2929–2941. Doi: 10.1007/s10811-017-1382-1
  • El Arroussia, H., Elmernissia, N., Benhimaa, R., El Kadmiria, I. M., Bendaou, N., Smouni, A., et al. (2016). Microalgae polysaccharides a promising plant growth biostimulant. J. Algal Biomass Utln 7 (4), 55–63.
  • Elmenofy, H. M., Hatterman-Valenti, H. M., Hassan, I. F., & Mahmoud, M. M. A. (2023). Effects of Deficit Irrigation and Anti-Stressors on Water Productivity, and Fruit Quality at Harvest and Stored ‘Murcott’ Mandarin. Horticulturae, 9(7), 787. https://doi.org/10.3390/horticulturae9070787
  • El-Naggar NEA, Hussein MH, Shaaban-Dessuuki SA, Dalal SD (2020). Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci. Rep. 10:3011
  • Eman A & Abd-Allah, A... (2008). Effect of Green Alga Cells Extract as Foliar Spray on Vegetative Growth, Yield and Berries Quality of Superior Grapevines. J. Agric. Environ. Sci. 4.
  • Ergun, O., Dasgan, H., Isık, O., (2018). Effects of microalgae Chlorella vulgaris on hydroponically grown lettuce. In: Presented at the XXX International Horticultural Congress IHC2018: II International Symposium on Soilless Culture and VIII International, vol. 1273, pp. 169–176.
  • Escalante, F.M.E., Cortés-Jiménez, D., Tapia-Reyes, G. et al. (2015). Immobilized microalgae and bacteria improve salt tolerance of tomatoes seedlings grown hydroponically. J Appl Phycol 27, 1923–1933 https://doi.org/10.1007/s10811-015-0651-0
  • Esserti S, Smaili A, Rifai LA, Koussa T, Makroum K, Belfaiza M, Kabil EM, Faize L, Burgos L, Alburquerque N. (2017). Protective Effect of Three Brown Seaweed Extracts against Fungal and Bacterial Diseases of Tomatoes. J. Appl. Phycol. 29: 1081–1093. https://Doi.org/10.1007/s10811-016-0996-z.
  • European Parliament & Council of the European Union. (2019). Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products. Official Journal of the European Union, L 170, 1–114.
  • Fahad, S., Hussain, S., Matloob, A., Khan, F. A., Khaliq, A., Saud, S., et al. (2015). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. 75 (2), 391–404. doi: 10.1007/s10725-014-0013-y
  • Farid, R., Mutale-Joan, C., Redouane, B., Mernissi Najib, E., Abderahime, A., Laila, S., et al. (2019). Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum. Appl. Biochem. Biotechnol. 188 (1), 225–240. doi: 10.1007/s12010-018-2916-y
  • Fernández, V., Sotiropoulos, T., and Brown, P. H. (2013). Foliar fertilization: scientific principles and field pratices. Int. Fertilizer industry Assoc. (Paris, France: IFA)
  • Fleurence, Joël & Morançais, Michèle & Dumay, Justine & Decottignies, Priscilla & Turpin, Vincent & Munier, Mathilde & Jaouen, Pascal. (2012). What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends in Food Science & Technology. 27. 57-61. 10.1016/j.tifs.2012.03.004.
  • Fritsche, U.; Brunori, G.; Chiaramonti, D.; Galanakis, C.; Hellweg, S.; Matthews, R.; Panoutsou, C. (2020). Future Transitions for the Bioeconomy Towards Sustainable Development and a Climate-Neutral Economy—Knowledge Synthesis Final Report; Publications Office of the European Union: Luxembourg, Volume 10, p. 667966.
  • Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061
  • Garlapati, D., Chandrasekaran, M., Devanesan, A., Mathimani, T., and Pugazhendhi, A. (2019). Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Appl. Microbiol. Biotechnol. 103 (12), 4709–4721. Doi: 10.1007/s00253-019-09811-1
  • Gemin, L. G., Mógor, Á.F., Amatussi, J., De Lara, G. B., and Mógor, G. (2022). Organic onion growth, yield and storage improved by foliar sprays of microalgae and fulvic acid as a natural biofertilizer. Bioscience J. 38 (e38045), 1981–3163. Doi: 10.14393/BJv38n0a2022-58854
  • Geries, L.S.M., Elsadany, A.Y. (2021). Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri. Arch Microbiol 203, 169–181 https://doi.org/10.1007/s00203-020-01991-z
  • Gitau, M. M., Farkas, A., Ördög, V., and Maróti, G. (2022). Evaluation of the biostimulant effects of two chlorophyta microalgae on tomatoes (Solanum lycopersicum). J. Cleaner Production 364, 132689. Doi: 10.1016/j.jclepro.2022.132689
  • Godlewska K, Michalak I, Tuhy A, Chojnacka K (2016). Plant growth biostimulants based on diferent methods of seaweed extraction with water. Bio Med Res Int. https://doi.org/10.1155/2016/59737 60
  • Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Critical Reviews in Plant Sciences, 30(1–2), 95–124. https://doi.org/10.1080/07352689.2011.554355
  • Gonçalves, A. L. (2021). The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Applied Sciences, 11(2), 871. https://doi.org/10.3390/app11020871
  • González-Pé rez, B. K., Rivas-Castillo, A. M., Valdez-Calderón, A., and GayossoMorales, M. A. (2022). Microalgae as biostimulants: A new approach in agriculture. World J. Microbiol. Biotechnol. 38 (1), 1–12. doi: 10.1007/s11274-021-03192-2
  • Gupta, S., Doležal, K., Kulkarni, M. G., Balázs, E., and Van Staden, J. (2022). Role of non-microbial biostimulants in regulation of seed germination and seedling establishment. Plant Growth Regul. 97(2), 1–43. doi: 10.1007/s10725-021-00794-6
  • Guzmán-Murillo, M. A., Ascencio, F., and Larrinaga-Mayoral, J. A. (2013). Germination and ROS detoxification in bell pepper (Capsicum annuum l.) under NaCl stress and treatment with microalgae extracts. Protoplasma 250 (1), 33–42. doi: 10.1007/ s00709-011-0369-z
  • Hamed SM, Abd El-Rhman AA, Abdel-Raouf N, Ibraheem IBM. (2018). Role of Marine Macroalgae in Plant Protection & Improvement for Sustainable Agriculture Technology.; J. Basic Appl. Sci. 7:104–110. https://doi.org/10.1016/j.bjbas.2017.08.002.
  • Hassan, T. U., Bano, A., & Naz, I. (2017). Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. International Journal of Phytoremediation, 19(6), 522–529. https://doi.org/10.1080/15226514.2016.1267696
  • Hider, R., Xiaole Kong (2010). Chemistry and biology of siderophores. Nat Prod Rep. 27(5):637-57. doi: 10.1039/b906679a.
  • Ibraheem, I. (2007). Cyanobacteria as alternative biological conditioners for bioremediation of barren soil. Egyptian Journal of Phycology, 8(1), 99-117. doi: 10.21608/egyjs.2007.114548
  • Ishfaq, M., Kiran, A., ur Rehman, H., Farooq, M., Ijaz, N. H., Nadeem, F., et al. (2022). Foliar nutrition: potential and challenges under multifaceted agriculture. Environ. Exp. Bot. 200, 104909. Doi: 10.1016/j.envexpbot.2022.104909
  • Jägermeyr, Jonas & Müller, Christoph & Ruane, Alex & Elliott, Joshua & Balkovič, Juraj & Castillo, Oscar & Faye, Babacar & Foster, Ian & Folberth, Christian & Franke, James & Fuchs, Kathrin & Guarin, Jose & Heinke, Jens & Iizumi, Toshichika & Jain, Atul & Kelly, David & Khabarov, Nikolay & Lange, Stefan & Rosenzweig, Cynthia. (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food. 2. 1-13. 10.1038/s43016-021-00400-y.
  • Jiménez E, Dorta F, Medina C, Ramírez A, Ramírez I, Peña-Cortés, H. (2011). Anti-Phytopathogenic Activities of MacroAlgae Extracts. Mar. Drugs 9: 739–756. https://doi.org/10.3390/md9050739.
  • Kalamaki, M. S., Merkouropoulos, G., and Kanellis, A. K. (2009). Can ornithine accumulation modulate abiotic stress tolerance in Arabidopsis? Plant Signal. Behav. 4, 1099–1101. doi: 10.4161/psb.4.11.9873
  • Kapoore, R. V., Wood, E. E., and Llewellyn, C. A. (2021). Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 49, 107754. Doi: 10.1016/j.biotechadv.2021.107754
  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., and Kaushik, B. (2009). Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica 54 (1), 43–51. doi: 10.1007/ s12223-009-0007-8
  • Kim MJ, Shim CK, Ko BG, Kim J. (2020). Effect of the Microalga Chlorella fusca CHK0059 on Strawberry PGPR and Biological Control of Fusarium Wilt Disease in Non-Pesticide Hydroponic Strawberry Cultivation. J Microbiol Biotechnol. 30(5):708-716. doi: 10.4014/jmb.2001.01015. PMID: 32482936; PMCID: PMC9728245.
  • Kumar, M., Prasanna, R., Bidyarani, N., Babu, S., Mishra, B. K., Kumar, A., et al. (2013). Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Scientia Hortic. 164, 94–101. doi: 10.1016/j.scienta.2013.09.014
  • Kusvuran, S. (2021). Microalgae (Chlorella vulgaris Beijerinck) alleviates drought stress of broccoli plants by improving nutrient uptake, secondary metabolites, and antioxidative defense system. Hortic. Plant J. 7, 221–231.
  • La Bella, E.; Baglieri, A.; Rovetto, E.I.; Stevanato, P.; Puglisi, I. (2021). Foliar Spray Application of Chlorella vulgaris Extract: Effect on the Growth of Lettuce Seedlings. Agronomy, 11, 308.
  • Lee, R. E. (2008). “Basic characteristics of the algae,” in Phycology, 4 Edn, ed. R. E. Lee (Cambridge: Cambridge University Press), 3–30. doi: 10.1017/cbo9780511812897.002
  • Lee, S.-M., and Ryu, C.-M. (2021). Algae as new kids in the beneficial plant microbiome. Front. Plant Sci. 12, 599742. Doi: 10.3389/fpls.2021.599742
  • Li, J., Lens, P.N., Ferrer, I., Du Laing, G., 2021. Evaluation of selenium-enriched microalgae produced on domestic wastewater as biostimulant and biofertilizer for growth of selenium-enriched crops. J. Appl. Phycol. 33, 3027–3039.
  • Li, Y., Xu, S.-S., Gao, J., Pan, S., and Wang, G.-X. (2014). Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in vicia faba. PloS One 9 (3), e93290. Doi: 10.1371/ journal. Pone.0093290
  • Liu T, Liu F, Wang C, Wang Z, Li Y. (2017). The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs. Bioresource Technology. 232: 44-52. 3.
  • Liu Y, Li X, Xing Z, Zhao X, Pan Y. (2013). Responses of soil microbial biomass and community composition to biological soil crusts in the revegetated areas of the Tengger Desert. Applied Soil Ecology 65: 52-59.
  • Lopéz E, Ruiz NA, Ferreira A, Acién FG, Gouveia L (2020). Biostimulant Potential of Scenedesmus obliquus Grown in Brewery Wastewater. Molecules 25:664–669
  • Marques, H.M.C., Mógor, Á.F., Amatussi, J.O. et al. (2023). Use of microalga Asterarcys quadricellularis in common bean. J Appl Phycol 35, 2891–2905. https://doi.org/10.1007/s10811-023-03098-6
  • Memeli, İ., Tüzel, Y., Uysal, Ö. ve diğerleri. Mikroalgler, topraksız marulda bitki büyümesini ve verimini artırdı ve yaprak rengini iyileştirdi. Sci. Rep. 15 , 40313 (2025). https://doi.org/10.1038/s41598-025-24004-9
  • Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160–176. https://doi.org/10.1002/elsc.201400191
  • Michalak, I.; Chojnacka, K. (2014). Algal extracts: Technology and advances. Eng. Life Sci., 14, 581–591.
  • Mishra, A.; Rajput, S.; Gupta, P.S.; Goyal, V.; Singh, S.; Sharma, S.; Shukla, S.; Singh, A.; Shukla, K.; Varma, A. (2021). Role of cyanobacteria in Rhizospheric nitrogen fixation. In Soil Nitrogen Ecology; Springer: Berlin/Heidelberg, Germany, pp. 497–519.
  • Mitter, E.K.; Tosi, M.; Obregón, D.; Dunfield, K.E.; Germida, J.J. (2021). Rethinking crop nutrition in times of modern microbiology: Innovative biofertilizer technologies. Front. Sustain. Food Syst. 5, 606815.
  • Mógor A, Ördög V, Pereira G, Molnár Z, Mógor G (2018) Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J Appl Phycol 30:453–460
  • Moreira, J. B., Cardias, B. B., Cruz, C. G., Almeida, A., Costa, J. A. V., de Morais, G. M., et al. (2022). Microalgae polysaccharides: An alternative source for food production and sustainable agriculture. Polysaccharides 3 (2), 441–457. doi: 10.3390/polysaccharides3020027
  • Mostafa, M.M., Hammad, D.M., Reda, M.M. et al. (2024). Water extracts of Spirulina platensis and Chlorella vulgaris enhance tomatoes (Solanum lycopersicum L.) tolerance against saline water irrigation. Biomass Conv. Bioref. 14, 21181–21191. https://doi.org/10.1007/s13399-023-04460-x
  • Mutale-joan C, Redouane B, Najib E, Yassine K, Lyamlouli K, Laila S, Zeroual Y, Hicham E (2020) Screening of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake and metabolite profle of Solanum lycopersicum L. Sci. Rep. 10:1–12
  • Nisha R., Kaushik A., Kaushik C. P. (2007). Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138, 49–56. doi: 10.1016/j.geoderma.2006.10.007
  • Özdemir, S., Sukatar, A., Oztekin, G. (2016). Production of Chlorella vulgaris and its effects on plant growth, yield and fruit quality of organic tomatoes grown in greenhouse as biofertilizer. Tarim Bilimleri Dergisi 22, 596–605.
  • Parmar P, Kumar R, Neha Y and Srivatsan V (2023) Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Front. Plant Sci. 14:1073546. Doi: 10.3389/fpls.2023.1073546
  • Parwani, L., Bhatt, M., and Singh, J. (2021). Potential biotechnological applications of cyanobacterial exopolysaccharides. Braz. Arch. Biol. Technol. 64, e21200401. Doi: 10.1590/ 1678-4324-2021200401
  • Pinzon, A. Y., Gonzalez-Delgado, A. D., and Kafarov, V. (2014). Optimization of microalgae composition for development of a typology of biorefinery based on profitability analysis. Chem. Eng. Trans. 37, 457–462.
  • Plaza, B. M., Gómez-Serrano, C., Acién-Fernández, F. G., Jimenez-Becker, S., & Ruiz-Lozano, J. M. (2018). Microalgae applications in agriculture: Current knowledge and limitations. Algal Research, 35, 76–88. https://doi.org/10.1016/j.algal.2018.08.004
  • Plaza, B.M. & Gómez-Serrano, Cintia & Acien, Gabriel & Jimenez-Becker, Silvia. (2018). Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. Journal of Applied Phycology. 30. 10.1007/s10811-018-1427-0.
  • Prates, J. A. M. (2025). Improving Meat Quality, Safety and Sustainability in Monogastric Livestock with Algae Feed Additives. Foods, 14(6), 1007. https://doi.org/10.3390/foods14061007
  • Prisa, D., & Spagnuolo, D. (2023). Plants Production with Microalgal Biostimulants. Preprints. https://doi.org/10.20944/preprints202306.2157.v1
  • Puglisi, I., Barone, V., Sidella, S., Coppa, M., Broccanello, C., Gennari, M., et al. (2018). Biostimulant activity of humic-like substances from agro-industrial waste of Chlorella vulgaris and Scenedesmus quadricauda. Eur. J. Phycol. 53, 433–442. doi: 10.1080/0.9670262.2018.1458997
  • Puglisi, I., La Bella, E., Rovetto, E. I., Stevanato, P., Fascella, G., and Baglieri, A. (2022). Morpho-biometric and biochemical responses in lettuce seedlings treated by different application methods of Chlorella vulgaris extract: foliar spray or root drench? J. Appl. Phycology 34 (2), 889–901. doi: 10.1007/s10811-021-02671-1
  • Puglisi, I., La Bella, E., Rovetto, E.I., Lo Piero, A.R., Baglieri, A., (2020). Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants 9, 123
  • Rachidi F, Benhima R, Sbabou L, El Arroussi H (2020) Microalgae polysaccharides bio-stimulating efect on tomatoes plants: growth and metabolic distribution. Biotechnol Rep 25:2–12
  • Rao PS, Parekh KS. (2022). Antibacterial Activity of Indian Seaweed Extracts. Bot. Mar. 24: 577–582. Open Access Research Journal of Biology and Pharmacy, 06(02), 029–034
  • Refaay, D.A.; El-Marzoki, E.M.; Abdel-Hamid, M.I.; Haroun, S.A. (2021). Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. J. Appl. Phycol. 33, 3807–3815.
  • Renuka, N., Guldhe, A., Prasanna, R., Singh, P., and Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol. Adv. 36 (4), 1255–1273. doi: 10.1016/j.biotechadv.2018.04.004
  • Renuka, N., Prasanna, R., Sood, A., Ahluwalia, A. S., Bansal, R., Babu, S., & Shivay, Y. S. (2018). Exploring the efficacy of cyanobacterial formulations on crop growth and soil properties. Journal of Applied Phycology, 30, 2061–2075. https://doi.org/10.1007/s10811-017-1335-9
  • Ritika, B. and Utpal, D. (2014) Bio Fertilizer a Way towards Organic Agriculture. African Journal of Microbiology Research, 8, 2332-2342. doi.org/10.5897/AJMR2013.6374
  • Rocha, I., Ma, Y., Souza-Alonso, P., Vosátka, M., Freitas, H., and Oliveira, R. S. (2019). Seed coating: a tool for delivering beneficial microbes to agricultural crops. Front. Plant Sci. 10, 1357. doi: 10.3389/fpls.2019.01357
  • Rong, X., Li, J., Chen, H. et al. The CMIP6 Historical Simulation Datasets Produced by the Climate System Model CAMS-CSM. Adv. Atmos. Sci. 38, 285–295 (2021). https://doi.org/10.1007/s00376-020-0171-y
  • Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A (2019). Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy 9(4):192
  • Rosa GM, Moraes L, Cardias BB, Costa JA. (2015). Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresource Technology v:192, p: 321-327. https://doi.org/10.1016/j.biortech.2015.05.020
  • Rouphael Y, Colla G (2018) Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci 9:1655
  • Rouphael Y, Colla G. (2020). Editorial: Biostimulants in Agriculture. Front Plant Sci. Feb 4; 11:40. doi: 10.3389/fpls.2020.00040. PMID: 32117379; PMCID: PMC7010726.
  • Roussos, P.A., Denaxa, N.-K., Damvakaris, T., (2009). Strawberry fruit quality attributes after application of plant growth stimulating compounds. Sci. Hortic. 119, 138–146.
  • Rupawalla, Z., Shaw, L., Ross, I. L., Schmidt, S., Hankamer, B., and Wolf, J. (2022). Germination screen for microalgae-generated plant growth biostimulants. Algal Res. 66, 102784. doi: 10.1016/j.algal.2022.102784
  • Sadak, A., & Şensoy, S. (2022). Utilization of microalgae [Chlorella vulgaris Beyerinck (Beijerinck)] on plant growth and nutrient uptake of garden cress (Lepidium sativum L.) grown in different fertilizer applications. International Journal of Agriculture Environment and Food Sciences, 6(2), 240-245. https://doi.org/10.31015/jaefs.2022.2.6
  • Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278. https://doi.org/10.1016/j.rser.2014.04.007
  • Salvi, L., Brunetti, C., Cataldo, E., Storchi, P., & Mattii, G. B. (2020). Eco-Physiological Traits and Phenylpropanoid Profiling on Potted Vitis vinifera L. cv Pinot Noir Subjected to Ascophyllum nodosum Treatments under Post-Veraison Low Water Availability. Applied Sciences, 10(13), 4473. https://doi.org/10.3390/app10134473
  • Samarasinghe, Nalin. (2012). Effect of High Pressure Homogenization on Aqueous Phase Solvent Extraction of Lipids from Nannochloris oculata Microalgae. Journal of Energy and Natural Resources. 1. 1. 10.11648/j.jenr.20120101.11.
  • Sano Y. (1999). Antiviral Activity of Alginate against Infection by Tobacco Mosaic Virus. Carbohydr. Polym. 38: 183–186.
  • Santini, G.; Rodolfi, L.; Biondi, N.; Sampietro, G.; Tredici, M.R. (2022). Effects of cyanobacterial-based biostimulants on plant growth and development: A case study on basil (Ocimum basilicum L.) J. Appl. Phycol., 34, 2063–2073.
  • Santner, A., Calderon-Villalobos, L. I. A., and Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 5 (5), 301–307. doi: 10.1038/nchembio.165
  • Şelem, E., Tunçtürk, R., Nohutçu, L., & Tunçtürk, M., (2022). Effects of rhizobacteria and algal species on physiological and biochemical parameters in Calendula officinalis L. under different irrigation regimes. Journal Of Elementology, vol.27, no.1, 87-97.
  • Shariatmadari, Z.; Riahi, H.; Abdi, M.; Hashtroudi, M.S.; Ghassempour, A.R. 2015). Impact of cyanobacterial extracts on the growth and oil content of the medicinal (plant Mentha piperita L. J. Appl. Phycol., 27, 2279–2287.
  • Shariatmadari, Z.; Riahi, H.; Hashtroudi, M.S.; Ghassempour, A.; Aghashariatmadary, Z. (2013). Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci. Plant Nutr., 59, 535–547.
  • Sharma, H., Fleming, C., Selby, C., Rao, J., and Mart’in, T. (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycology 26 (1), 465–490. doi: 10.1007/s10811- 013-0101-9
  • Sharma, I., Ching, E., Saini, S., Bhardwaj, R., and Pati, P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety pusa basmati-1. Plant Physiol. Biochem. 69, 17–26. doi: 10.1016/ j. plaphy.2013.04.013
  • Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. et al. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2, 587 https://doi.org/10.1186/2193-1801-2-587
  • Singh B, Kaur A. (2018). Control of insect pests in crop plants and stored food grains using plant saponins: a review. LWT-Food Sci. Technol. 87: 93–101.
  • Singh JS, Kumar A, Rai AN, Singh DP. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability; Front Microbiol. 7:529.
  • Sojka M and A. Saeid, (2022). Chapter 10- Bio-Based Products for Agriculture, in Smart Agrochemicals for Sustainable Agriculture, ed. K. Chojnacka and A. Saeid, Academic Press, pp. 279–310, ISBN 9780128170366, DOİ:10.1016/B978-0-12-817036-6.00001-7
  • Spinelli, F., Fiori, G., Noferini, M., Sprocatti, M., Costa, G., (2010). A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci. Hortic. 125 (3), 263–269.
  • Stirk, W. A., Ördög, V., Novák, O., Rolč ık, J., Strnad, M., Ba ́ ́lint, P., et al. (2013). Auxin and cytokinin relationships in 24 microalgal strains1. J. phycology 49 (3), 459–467. doi: 10.1111/jpy.12061
  • Supraja, K. V., Behera, B., and Balasubramanian, P. (2020b). Performance evaluation of hydroponic system for co-cultivation of microalgae and tomatoes plant. J. Cleaner Production 272, 122823. doi: 10.1016/j.jclepro.2020.122823
  • Supraja, K., Behera, B., and Balasubramanian, P. (2020’a). Efficacy of microalgal extracts as biostimulants through seed treatment and foliar spray for tomatoes cultivation. Ind. Crops products 151, 112453. doi: 10.1016/j.indcrop.2020.112453
  • Tarakhovskaya, E., Maslov, Y. I., and Shishova, M. (2007). Phytohormones in algae. Russian J. Plant Physiol. 54 (2), 163–170. doi: 10.1134/S1021443707020021
  • Tejada-Ruiz, S., Gonzalez-Lopez, C., Rojas, E., & Jiménez-Becker, S. (2020). Effect of the Foliar Application of Microalgae Hydrolysate (Arthrospira platensis) and Silicon on the Growth of Pelargonium hortorum L.H. Bailey under Salinity Conditions. Agronomy, 10(11), 1713.
  • Tibbetts, S. M., Milley, J. E., and Lall, S. P. (2015). Chemical composition and nutritional properties of fresh water and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 27, 1109–1119. doi: 10.1007/s10811-014-0428-x.
  • Weber N, Schmitzer V, Jakopic J, Stampar F (2018) First fruit in season: seaweed extract and silicon advance organic strawberry (Fragaria×ananassa Duch.) fruit formation and yield. Sci Hortic 242:103–109.
  • Win TT, Barone GD, Secundo F, Fu P. (2018). Algal Biofertilizers and Plant Growth Stimulants for Sustainable Agriculture. Industrial Biotechnology 14: 203-211.
  • Zhang Y, Xu J, Li R, Ge Y, Li Y, Li R. (2023). Plants' Response to Abiotic Stress: Mechanisms and Strategies. Int J Mol Sci. 30;24(13):10915. doi: 10.3390/ijms241310915. PMID: 37446089; PMCID: PMC10341657.
There are 142 citations in total.

Details

Primary Language English
Subjects Environmental Rehabilitation and Restoration
Journal Section Review Article
Authors

Yaşar Ertürk 0000-0003-2525-0260

Meral Kutlu 0000-0002-3288-1266

Submission Date November 13, 2025
Acceptance Date December 21, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: Special

Cite

APA Ertürk, Y., & Kutlu, M. (2025). An Potential Alternative in Sustainable Horticulture: Microalgae. International Journal of Agriculture Environment and Food Sciences, 9(Special), 358-377. https://doi.org/10.31015/2025.si.35

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27