Research Article
BibTex RIS Cite
Year 2019, , 9 - 11, 14.03.2019
https://doi.org/10.31015/jaefs.2019.1.3

Abstract

References

  • Berger, J., Le Meur, H., Dutykh, D., Nguyen, D. M., & Grillet, A.-C. (2018). Analysis and improvement of the VTT mold growth model: Application to bamboo fiberboard. Building and Environment. doi:https://doi.org/10.1016/j.buildenv.2018.03.031
  • Buchanan, R. L., Whiting, R. C., & Damert, W. C. (1997). When is simple good enough: A comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol, 14(4), 313-326. doi:DOI 10.1006/fmic.1997.0125
  • Cambaza, E., Koseki, S., & Kawamura, S. (2018). The Use of Colors as an Alternative to Size in Fusarium graminearum Growth Studies. Foods, 7(7). doi:10.3390/foods7070100
  • Deacon, J. W. (2006). Fungal biology (4th ed.). Malden, MA: Blackwell Pub.
  • Garcia, D., Ramos, A. J., Sanchis, V., & Marin, S. (2009). Predicting mycotoxins in foods: a review. Food Microbiol, 26(8), 757-769. doi:10.1016/j.fm.2009.05.014
  • Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular plant pathology, 5(6), 515-525.
  • Hussein, H. S., & Brasel, J. M. (2001). Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167(2), 101-134. Madigan, M. T., Martinko, J. M., & Parker, J. (2017). Brock biology of microorganisms (Vol. 13): Pearson.
  • Møller, E. B., Andersen, B., Rode, C., & Peuhkuri, R. (2017). Conditions for mould growth on typical interior surfaces. Energy Procedia, 132, 171-176. doi:https://doi.org/10.1016/j.egypro.2017.09.680
  • Neagu, C., & Borda, D. (2013). Modelling the growth of Fusarium graminearum on barley and wheat media extract. Romanian Biotechnological Letters, 18(4), 8489.
  • Pestka, J. J. (2007). Deoxynivalenol: Toxicity, mechanisms and animal health risks. Animal Feed Science and Technology, 137(3–4), 283-298. doi:http://dx.doi.org/10.1016/j.anifeedsci.2007.06.006
  • Sadovský, Z., & Koronthályová, O. (2017). Exploration of probabilistic mould growth assessment. Applied Mathematical Modelling, 42, 566-575. doi:https://doi.org/10.1016/j.apm.2016.10.049
  • Sorensen, J. L., & Sondergaard, T. E. (2014). The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol, 170, 55-60. doi:10.1016/j.ijfoodmicro.2013.10.024
  • Sugiura, Y. (1996). Gibberella zeae (Schwabe) Petch. In Japan Collection of Microorganisms (Ed.), JCM Catalogue. Tsukuba: Microbe Division (JCM).
  • Sugiura, Y., Watanabe, Y., Tanaka, T., Yamamoto, S., & Ueno, Y. (1990). Occurrence of Gibberella zeae strains that produce both nivalenol and deoxynivalenol. Appl Environ Microbiol, 56(10), 3047-3051.
  • Weidenbörner, M. (2001). Encyclopedia of Food Mycotoxins (1 ed.): Springer-Verlag Berlin Heidelberg.
  • Yoshizawa, T. (2013). Thirty-five Years of Research on Deoxynivalenol, a Trichothecene Mycotoxin: with Special Reference to Its Discovery and Co-occurrence with Nivalenol in Japan. Food Safety, 1(1), 2013002-2013002. doi:10.14252/foodsafetyfscj.2013002

Fusarium graminearum growth and its fitness to the commonly used models

Year 2019, , 9 - 11, 14.03.2019
https://doi.org/10.31015/jaefs.2019.1.3

Abstract

Fusarium graminearum causes head blight in wheat and corn, and produces chemicals harmful for humans and other animals. It is important to know how it grows in order to prevent outbreaks. There are three well-known growth models for microorganisms and they seem applicable to molds: linear, Gompertz and Baranyi. This study aimed to see which could better represent F. graminearum's growth. Three replicates were grown in yeast extract agar (YEA) for 20 days, the Feret's radius was measured in ImageJ software, and then related to the models. Baranyi's model was only acceptable according to a Wilcoxon test (p = 0.280). Thus, this shall be the one used, even in routine analyses.tional properties of some wild plants, and the results may be useful for the evaluation of dietary information.

References

  • Berger, J., Le Meur, H., Dutykh, D., Nguyen, D. M., & Grillet, A.-C. (2018). Analysis and improvement of the VTT mold growth model: Application to bamboo fiberboard. Building and Environment. doi:https://doi.org/10.1016/j.buildenv.2018.03.031
  • Buchanan, R. L., Whiting, R. C., & Damert, W. C. (1997). When is simple good enough: A comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol, 14(4), 313-326. doi:DOI 10.1006/fmic.1997.0125
  • Cambaza, E., Koseki, S., & Kawamura, S. (2018). The Use of Colors as an Alternative to Size in Fusarium graminearum Growth Studies. Foods, 7(7). doi:10.3390/foods7070100
  • Deacon, J. W. (2006). Fungal biology (4th ed.). Malden, MA: Blackwell Pub.
  • Garcia, D., Ramos, A. J., Sanchis, V., & Marin, S. (2009). Predicting mycotoxins in foods: a review. Food Microbiol, 26(8), 757-769. doi:10.1016/j.fm.2009.05.014
  • Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular plant pathology, 5(6), 515-525.
  • Hussein, H. S., & Brasel, J. M. (2001). Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167(2), 101-134. Madigan, M. T., Martinko, J. M., & Parker, J. (2017). Brock biology of microorganisms (Vol. 13): Pearson.
  • Møller, E. B., Andersen, B., Rode, C., & Peuhkuri, R. (2017). Conditions for mould growth on typical interior surfaces. Energy Procedia, 132, 171-176. doi:https://doi.org/10.1016/j.egypro.2017.09.680
  • Neagu, C., & Borda, D. (2013). Modelling the growth of Fusarium graminearum on barley and wheat media extract. Romanian Biotechnological Letters, 18(4), 8489.
  • Pestka, J. J. (2007). Deoxynivalenol: Toxicity, mechanisms and animal health risks. Animal Feed Science and Technology, 137(3–4), 283-298. doi:http://dx.doi.org/10.1016/j.anifeedsci.2007.06.006
  • Sadovský, Z., & Koronthályová, O. (2017). Exploration of probabilistic mould growth assessment. Applied Mathematical Modelling, 42, 566-575. doi:https://doi.org/10.1016/j.apm.2016.10.049
  • Sorensen, J. L., & Sondergaard, T. E. (2014). The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol, 170, 55-60. doi:10.1016/j.ijfoodmicro.2013.10.024
  • Sugiura, Y. (1996). Gibberella zeae (Schwabe) Petch. In Japan Collection of Microorganisms (Ed.), JCM Catalogue. Tsukuba: Microbe Division (JCM).
  • Sugiura, Y., Watanabe, Y., Tanaka, T., Yamamoto, S., & Ueno, Y. (1990). Occurrence of Gibberella zeae strains that produce both nivalenol and deoxynivalenol. Appl Environ Microbiol, 56(10), 3047-3051.
  • Weidenbörner, M. (2001). Encyclopedia of Food Mycotoxins (1 ed.): Springer-Verlag Berlin Heidelberg.
  • Yoshizawa, T. (2013). Thirty-five Years of Research on Deoxynivalenol, a Trichothecene Mycotoxin: with Special Reference to Its Discovery and Co-occurrence with Nivalenol in Japan. Food Safety, 1(1), 2013002-2013002. doi:10.14252/foodsafetyfscj.2013002
There are 16 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Edgar Cambaza 0000-0002-0592-7812

Shigenobu Koseki This is me 0000-0001-7046-5354

Shuso Kawamura This is me 0000-0002-5486-5451

Publication Date March 14, 2019
Submission Date May 28, 2018
Acceptance Date January 6, 2019
Published in Issue Year 2019

Cite

APA Cambaza, E., Koseki, S., & Kawamura, S. (2019). Fusarium graminearum growth and its fitness to the commonly used models. International Journal of Agriculture Environment and Food Sciences, 3(1), 9-11. https://doi.org/10.31015/jaefs.2019.1.3


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27