Research Article
BibTex RIS Cite
Year 2019, , 34 - 40, 14.03.2019
https://doi.org/10.31015/jaefs.2019.1.8

Abstract

References

  • Amanlıyev, A. İşankulıyev, H., (2005), Tahıllar, okul kitabı (gollanma), S.A. Niyazov Tarım Üniversitesi, Aşgabat-2005, 35-38.
  • Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agr. Res., 6(9), 2026-2032.
  • Aykut, F., Yüce, S., Demir, İ., Akçalı Can, R.R., Furan, M.A., (2005). Ekmeklik Buğday Çeşit ve Hatlarının Bornova Koşullarında Performansları. Türkiye VI. Tarla Bitkileri Kongresi, 5-9 Eylül, Antalya, 89-93
  • Aydoğan, S., Soylu, S. (2016). Yetiştirme koşullarının bazı ekmeklik buğday çeşitlerinin kalite özelliklerine etkisi. Selçuk Tarım Bilimleri Dergisi, 2(2), 123-127.
  • Bahar, B., Yildirim, M., Yucel, C. (2011). Heat and drought resistance criteria in spring bread wheat (Triticum aestivum L.): Morpho-physiological parameters for heat tolerance. Scientific Research and Essays, 6(10), 2212-2220.
  • Bockus, W.W., Bowden, R.L., Hunger, R.M., Murray, T.D., Smiley, R.W. (2010). Compendium of wheat diseases and pests (No. Ed. 3). American Phytopathological Society (APS Press).
  • Breiman, A., Graur, D. (1995). Wheat evolution. Israel Journal of Plant Sciences, 43(2), 85-98.
  • Cossani, C.M., Reynolds, M.P. (2015). Heat stress adaptation in elite lines derived from synthetic hexaploid wheat. Crop Science, 55(6), 2719-2735.
  • Crusiol, L.G.T., Carvalho, J. de F.C., Sibaldelli, R.N.R., Neiverth, W., Rio, A. do, Ferreira, L.C., Procópio, S. de O., Mertz-Henning, L.M., Nepomuceno, A.L., Neumaier, N., Farias, J.R.B. (2016). NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars. Precis. Agric., 1 –21
  • Deery, D.M., Rebetzke, G.J., Jimenez-Berni, J.A., James, R.A., Condon, A.G., Bovill, W.D., Hutchinson,P., Scarrow, J., Davy, R., Furbank, R.T. (2016). Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Frontiers in plant science, 7, 1808.
  • FAOSTAT, 2017 http://www.fao.org/faostat/en/#data/QC
  • Forgone, A.G. (2009). Physiological indicators of drought tolerance of wheat. Biology PhD Program. University of Szeged Faculty of Science and Informatics Department of plant Biology, Szeged.
  • Hossain, M.M., Hossain, A., Alam, M.A., EL Sabagh, A., Khandakar Faisal Ibn Murad, Haque, M.M., Muriruzzaman, M., Islam, M.Z. Das, S. Barutcular, C., Kizilgeci, F. (2018) Evaluation of fifty spring wheat genotypes grown under heat stress condition in multiple environments of Bangladesh. Fresen. Environ. Bull., 27, 5993-6004.
  • Kizilgeci, F., Yildirim, M., Akinci, C., Albayrak, O., Sesiz, U., Tazebay, N. (2018). Evaluation of relationships between yield and yield components with physiological parameters in barley (Hordeum vulgare L.) genotypes. Dicle University Journal of Institute of Natural and Applied Science, 7(2), 61-66
  • Kizilgeci, F. (2019). Post-anthesis changes in chlorophyll and agronomic traits of bread wheat genotypes. Applied Ecology And Environmental Research, 17(2),1913-1922.
  • Kumar, P., Yadava, R.K., Gollen, B., Kumar, S., Verma, R.K., Yadav, S. (2011). Nutritional contents and medicinal properties of wheat: a review. Life Sciences and Medicine Research, 22, 1-10.
  • Lopes, M.S., Reynolds, M.P. (2012). Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of experimental botany, 63(10), 3789-3798.
  • Magney, T.S., Eitel, J.U.H., Huggins, D.R., Vierling, L.A. (2016). Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agric. For. Meteorol., 217, 46–60.
  • Ozen, S., Akman, Z. (2014). Determination of Yield and Quality Characteristics of Some Bread Wheat Cultivars in Yozgat Ecologial Conditions. SDÜ Ziraat Fakültesi Dergisi, 2(1), 35-43.
  • Öztürk, A., Aydın, M. (2017). Physiological characterization of Turkish bread wheat genotypes for resistance to late drought stress. Turkish Journal of Agriculture and Forestry, 41(6), 414-440.
  • Pinto, R.S., Reynolds, M.P., Mathews, K.L., McIntyre, C.L., Olivares-Villegas, J.-J., Chapman, S.C. (2010). Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet., 121, 1001–1021.
  • Pinto, R.S., Reynolds, M.P. (2015). Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theoretical and Applied Genetics, 128(4), 575-585.
  • Pinto, R.S., Lopes, M.S., Collins, N.C., Reynolds, M.P. (2016). Modelling and genetic dissection of staygreen under heat stress. Theor. Appl. Genet. 1–20.
  • Rebetzke, G.J., Jimenez-Berni, J.A., Bovill, W.D., Deery, D.M., James, R.A. (2016). High-throughput phenotyping technologies allow accurate selection of stay-green. Journal of experimental botany, 67(17), 4919-4924.
  • Reynolds, J.F., Smith, D.M.S., Lambin, E.F., Turner, B.L., Mortimore, M., Batterbury, S. P.J., Walker, B. (2007). Global desertification: Building a science for dryland development. Science, 316, 847–851.
  • Reynolds M.P., Trethowan R.M. (2007). Physiological interventions in breeding for adaptation to abiotic stress, In J. H. J. Spiertz et al. (ed) Scale and complexity in plant systems research, gene-plant-crop relations. Springer, Dordrecht, the Netherlands.
  • Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60(6), 1537-1553.
  • Šramková, Z., Gregová, E., Šturdík, E. (2009). Chemical composition and nutritional quality of wheat grain. Acta Chimica Slovaca, 2(1), 115-138.
  • Şener, O., Kılınç M., Yağbasanlar T., Gözübenli, H., Karadavut, U., (1997). Hatay koşullarında bazı ekmeklik (Triticum aestivum L. Em Thell) ve makarnalık buğday (Triticum durum Desf) çeşit ve hatlarının saptanması. Türkiye II. Tarla Bitkileri Kongresi, 22 – 25 Eylül 1997, Samsun, 1-5.
  • Taghouti, M., Gaboun, F., Nsarellah, N., Rhrib, R., El- Haila, M., Kamar, M., Abbad -Andaloussi F. and Udupa S. M. (2010). Genotype x Environment interaction for quality traits in durum wheat cultivars adapted to different environments. African Journal of Biotechnology, 9(21), 3054-3062.
  • Tanrıverdi, C. 2003. Available water effects on water stress indices for irrigated corn grown in sandy soils. Ph. D. Thesis, Department of Chemical and Bioresource Engineering, Colorado State University. Wijngaard, H.H., Arendt, E.K., (2006). Buckwheat. Cereal Chemistry 83 (4), 391-401.
  • Yildirim , M., Barutcular, C., Koc, M., Dizlek, H., EL Sabagh, A., Hossain, A., Islam, M.S, Toptas I., Basdemir F., Albayrak O., Akinci, C. (2018). Assessment of the grain quality of wheat genotypes grown under multiple environments using GGE biplot analysis. Fresenius Environmental Bulletin, 27(7), 4830-4837.
  • Yeganehpoor, F., Salmasi, S.Z. Kolvanagh, J. S., Golezani, K.G., Dastborhan, S. (2016). Changes in growth, chlorophyll content and grain yield of Coriander (Coriandrum sativum L.) in response to water stress, chemical and biological fertilizers and salicylic acid. Intl. J. Adv. Biol. Biomed. Res., 5(1), 228-236.

Evaluation of growth, yield, quality and physiological parameters of eleven Australian bread wheat (Triticum aestivum L.) cultivars grown under the ecological condition of Diyarbakir, Turkey

Year 2019, , 34 - 40, 14.03.2019
https://doi.org/10.31015/jaefs.2019.1.8

Abstract

Wheat cultivars generally show significant differences for grain yield, quality and physiological parameters under different environmental conditions. Thus it is crucial to assess the performance of bread wheat genotypes collected from different origins for domestication for a specific ecologic conditions and also to develop high yield as well as stress tolerant cultivars. In the context, the study was carried out under the ecological condition of Diyarbakır in Turkey during 2014-2015 growing season.  In the present research, three Turkish origin bread wheat cultivars such as 'Pehlivan', 'Ceyhan 99' and 'Seri 2013' and eleven bread wheat of Australian origin such as 'LPB 08-1799', 'Eagle Rock', 'Magenta', 'Emu Rock', 'Wyalkatchem', 'Young', 'Calingiri', 'Yitpi', 'Corack', 'Envoy' and 'Mace' were used as experimental plant material. Data on grain yield, grain hardness, plant height, test weight, thousand kernel weight, wet gluten, protein content, zeleny sedimentation,  starch content, normalized differences vegetative index, SPAD, leaf area index and canopy temperature were investigated in the study. After evaluation, it was found that all recorded traits of fourteen wheat bread cultivars were changed according to cultivars under the ecological conditions of Diyarbakir-Turkey. However, genotypes which were Australian origin performed the best than Turkish origin. Among the genotypes, the maximum values for grain yield, quality and physiological parameters were recorded for cultivar, 'Mace' (for grain yield) and 'Young' (for quality traits). Therefore, cultivars which were Australian origin can be grown and also may be used in the breeding programs to develop wheat cultivars to cultivate  under the Diyarbakir ecological conditions of Turkey. 

References

  • Amanlıyev, A. İşankulıyev, H., (2005), Tahıllar, okul kitabı (gollanma), S.A. Niyazov Tarım Üniversitesi, Aşgabat-2005, 35-38.
  • Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agr. Res., 6(9), 2026-2032.
  • Aykut, F., Yüce, S., Demir, İ., Akçalı Can, R.R., Furan, M.A., (2005). Ekmeklik Buğday Çeşit ve Hatlarının Bornova Koşullarında Performansları. Türkiye VI. Tarla Bitkileri Kongresi, 5-9 Eylül, Antalya, 89-93
  • Aydoğan, S., Soylu, S. (2016). Yetiştirme koşullarının bazı ekmeklik buğday çeşitlerinin kalite özelliklerine etkisi. Selçuk Tarım Bilimleri Dergisi, 2(2), 123-127.
  • Bahar, B., Yildirim, M., Yucel, C. (2011). Heat and drought resistance criteria in spring bread wheat (Triticum aestivum L.): Morpho-physiological parameters for heat tolerance. Scientific Research and Essays, 6(10), 2212-2220.
  • Bockus, W.W., Bowden, R.L., Hunger, R.M., Murray, T.D., Smiley, R.W. (2010). Compendium of wheat diseases and pests (No. Ed. 3). American Phytopathological Society (APS Press).
  • Breiman, A., Graur, D. (1995). Wheat evolution. Israel Journal of Plant Sciences, 43(2), 85-98.
  • Cossani, C.M., Reynolds, M.P. (2015). Heat stress adaptation in elite lines derived from synthetic hexaploid wheat. Crop Science, 55(6), 2719-2735.
  • Crusiol, L.G.T., Carvalho, J. de F.C., Sibaldelli, R.N.R., Neiverth, W., Rio, A. do, Ferreira, L.C., Procópio, S. de O., Mertz-Henning, L.M., Nepomuceno, A.L., Neumaier, N., Farias, J.R.B. (2016). NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars. Precis. Agric., 1 –21
  • Deery, D.M., Rebetzke, G.J., Jimenez-Berni, J.A., James, R.A., Condon, A.G., Bovill, W.D., Hutchinson,P., Scarrow, J., Davy, R., Furbank, R.T. (2016). Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Frontiers in plant science, 7, 1808.
  • FAOSTAT, 2017 http://www.fao.org/faostat/en/#data/QC
  • Forgone, A.G. (2009). Physiological indicators of drought tolerance of wheat. Biology PhD Program. University of Szeged Faculty of Science and Informatics Department of plant Biology, Szeged.
  • Hossain, M.M., Hossain, A., Alam, M.A., EL Sabagh, A., Khandakar Faisal Ibn Murad, Haque, M.M., Muriruzzaman, M., Islam, M.Z. Das, S. Barutcular, C., Kizilgeci, F. (2018) Evaluation of fifty spring wheat genotypes grown under heat stress condition in multiple environments of Bangladesh. Fresen. Environ. Bull., 27, 5993-6004.
  • Kizilgeci, F., Yildirim, M., Akinci, C., Albayrak, O., Sesiz, U., Tazebay, N. (2018). Evaluation of relationships between yield and yield components with physiological parameters in barley (Hordeum vulgare L.) genotypes. Dicle University Journal of Institute of Natural and Applied Science, 7(2), 61-66
  • Kizilgeci, F. (2019). Post-anthesis changes in chlorophyll and agronomic traits of bread wheat genotypes. Applied Ecology And Environmental Research, 17(2),1913-1922.
  • Kumar, P., Yadava, R.K., Gollen, B., Kumar, S., Verma, R.K., Yadav, S. (2011). Nutritional contents and medicinal properties of wheat: a review. Life Sciences and Medicine Research, 22, 1-10.
  • Lopes, M.S., Reynolds, M.P. (2012). Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of experimental botany, 63(10), 3789-3798.
  • Magney, T.S., Eitel, J.U.H., Huggins, D.R., Vierling, L.A. (2016). Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agric. For. Meteorol., 217, 46–60.
  • Ozen, S., Akman, Z. (2014). Determination of Yield and Quality Characteristics of Some Bread Wheat Cultivars in Yozgat Ecologial Conditions. SDÜ Ziraat Fakültesi Dergisi, 2(1), 35-43.
  • Öztürk, A., Aydın, M. (2017). Physiological characterization of Turkish bread wheat genotypes for resistance to late drought stress. Turkish Journal of Agriculture and Forestry, 41(6), 414-440.
  • Pinto, R.S., Reynolds, M.P., Mathews, K.L., McIntyre, C.L., Olivares-Villegas, J.-J., Chapman, S.C. (2010). Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet., 121, 1001–1021.
  • Pinto, R.S., Reynolds, M.P. (2015). Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theoretical and Applied Genetics, 128(4), 575-585.
  • Pinto, R.S., Lopes, M.S., Collins, N.C., Reynolds, M.P. (2016). Modelling and genetic dissection of staygreen under heat stress. Theor. Appl. Genet. 1–20.
  • Rebetzke, G.J., Jimenez-Berni, J.A., Bovill, W.D., Deery, D.M., James, R.A. (2016). High-throughput phenotyping technologies allow accurate selection of stay-green. Journal of experimental botany, 67(17), 4919-4924.
  • Reynolds, J.F., Smith, D.M.S., Lambin, E.F., Turner, B.L., Mortimore, M., Batterbury, S. P.J., Walker, B. (2007). Global desertification: Building a science for dryland development. Science, 316, 847–851.
  • Reynolds M.P., Trethowan R.M. (2007). Physiological interventions in breeding for adaptation to abiotic stress, In J. H. J. Spiertz et al. (ed) Scale and complexity in plant systems research, gene-plant-crop relations. Springer, Dordrecht, the Netherlands.
  • Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60(6), 1537-1553.
  • Šramková, Z., Gregová, E., Šturdík, E. (2009). Chemical composition and nutritional quality of wheat grain. Acta Chimica Slovaca, 2(1), 115-138.
  • Şener, O., Kılınç M., Yağbasanlar T., Gözübenli, H., Karadavut, U., (1997). Hatay koşullarında bazı ekmeklik (Triticum aestivum L. Em Thell) ve makarnalık buğday (Triticum durum Desf) çeşit ve hatlarının saptanması. Türkiye II. Tarla Bitkileri Kongresi, 22 – 25 Eylül 1997, Samsun, 1-5.
  • Taghouti, M., Gaboun, F., Nsarellah, N., Rhrib, R., El- Haila, M., Kamar, M., Abbad -Andaloussi F. and Udupa S. M. (2010). Genotype x Environment interaction for quality traits in durum wheat cultivars adapted to different environments. African Journal of Biotechnology, 9(21), 3054-3062.
  • Tanrıverdi, C. 2003. Available water effects on water stress indices for irrigated corn grown in sandy soils. Ph. D. Thesis, Department of Chemical and Bioresource Engineering, Colorado State University. Wijngaard, H.H., Arendt, E.K., (2006). Buckwheat. Cereal Chemistry 83 (4), 391-401.
  • Yildirim , M., Barutcular, C., Koc, M., Dizlek, H., EL Sabagh, A., Hossain, A., Islam, M.S, Toptas I., Basdemir F., Albayrak O., Akinci, C. (2018). Assessment of the grain quality of wheat genotypes grown under multiple environments using GGE biplot analysis. Fresenius Environmental Bulletin, 27(7), 4830-4837.
  • Yeganehpoor, F., Salmasi, S.Z. Kolvanagh, J. S., Golezani, K.G., Dastborhan, S. (2016). Changes in growth, chlorophyll content and grain yield of Coriander (Coriandrum sativum L.) in response to water stress, chemical and biological fertilizers and salicylic acid. Intl. J. Adv. Biol. Biomed. Res., 5(1), 228-236.
There are 33 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Ferhat Kızılgeçi 0000-0002-7884-5463

Mehmet Yıldırım 0000-0002-6953-4479

Akbar Hossain 0000-0003-0264-2712

Publication Date March 14, 2019
Submission Date January 6, 2019
Acceptance Date February 24, 2019
Published in Issue Year 2019

Cite

APA Kızılgeçi, F., Yıldırım, M., & Hossain, A. (2019). Evaluation of growth, yield, quality and physiological parameters of eleven Australian bread wheat (Triticum aestivum L.) cultivars grown under the ecological condition of Diyarbakir, Turkey. International Journal of Agriculture Environment and Food Sciences, 3(1), 34-40. https://doi.org/10.31015/jaefs.2019.1.8


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27