Abstract
Salinity interferes with germination and hampers the growth of wheat especially at seedling stage which necessitates determining of salt tolerant cultivars. Based upon the current situation a controlled experiment was carried out at the Laboratory of Horticulture, Faculty of Agriculture, Cukurova University, Turkey to comparatively evaluate wheat varieties response to imposed salt stress. Germination and seedling growth properties under salt stress were taken as response variables. The seeds of five bread wheat genotypes (‘Wafia’, ‘Lucilla’, ‘Envoy’, ‘Lok1’and ‘RSP- 561’) were placed in Petri dishes with salinity doses (Control (0), 4, 8 and 12 dS.m-1 NaCl) which were applied at germination and subsequent early seedling phases under laboratory conditions. The results revealed that root growth was highly sensitive to salt stress and the varieties of Envoy and Lucilla remained relatively tolerant to salt stress than other cultivars. The biochemical analysis revealed that proline content spiked with increasing salinity level, ‘RSP-561’ under 8 dS.m-1and 12 dS.m-1 recorded the maximum proline content. Salt stress boosted leaf proline content of salt sensitive wheat genotypes (‘Wafia’ and ‘Lok1’), whereas declined proline level was observed for salt tolerant cultivars. In addition, salt-sensitive genotypes showed a reduction in chlorophyll content a, b, total chlorophyll and carotenoid while, ‘Wafia’ and ‘RSP-561’ recorded the minimum Chlorophylls and Carotenoid contents. Further investigations are needed, however, to enhance understanding of the salt stress effects during the whole growing cycle of wheat.