Research Article
BibTex RIS Cite

Effects of capsanthin on surface hydrophobicity and auto-aggregation properties of Lactobacillus acidophilus and Lactobacillus rhamnosus

Year 2021, , 243 - 249, 28.06.2021
https://doi.org/10.31015/jaefs.2021.2.15

Abstract

Paprika is a one-year culture plant that grows in temperate climates and derives its color from the carotenoid compounds. The basic red color in paprika originates from capsanthin and capsorubin. People must have a healthy gastrointestinal system to maintain a healthy life. Lactic acid bacteria, which constitute the most important group of probiotic microorganisms, are natural members of a healthy intestinal microflora. Main lactic acid bacteria are Lactobacillus acidophilus and Lactobacillus rhamnosus, which can inhibit pathogenic microorganisms, strengthen immune system, and improve the microbial balance of the gastrointestinal tract. Such bacteria can be modulated by diet constituents, thusw the present study aims to investigate the effects of capsanthin on probiotic bacteria Lactobacillus acidophilus LA-5 and Lactobacillus rhamnosus GG. For this, different concentrations of capsanthin were added to growth media of probiotic bacteria, and their effects on bacterial growth kinetics, bacterial surface hydrophobicity (Microbial Adhesion to Solvents - MATS Test) and bacterial auto-aggregation were examined. According to the results, capsanthin did not show any negative effects on the growth, while decreased the hydrophobicity of Lactobacillus rhamnosus GG dose-dependent manner but increasing the hydrophobicity of Lactobacillus acidophilus LA-5. In auto-agregation, changes were observed depending on the dose and time. This study shows carotenoids taken together with the diet can affect beneficial bacteria.

Supporting Institution

TÜBİTAK

Project Number

1919B011900220

Thanks

The authors thank to Chr. Hansen, Turkey for supplying the probiotic strains.

References

  • Alp D, Kuleaşan H. (2019) Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World Journal of Microbiology and Biotechnology, 35, 10, 156. https://doi.org/10.1007/s11274-019-2730-x
  • Alp D, Kuleaşan H, Korkut Altıntaş A. (2020) The importance of the S-layer on the adhesion and aggregation ability of Lactic acid bacteria. Molecular Biology Reports, 47, 4, 3449–3457. https://doi.org/10.1007/s11033-020-05430-6
  • Akdoğan, A., Dinçer, C., Torun, M., Şahin, H., Topuz, A., Özdemir, F. Effects Of Carotenoid Compounds On Health. Turkey 10. Food Congress, Erzurum, Turkey; 21-23 May 2008; 1083-1086. http://www.gidadernegi.org/TR/Genel/240934952b257.pdf?DIL=1&BELGEANAH=1612&DOSYAISIM=240934952.pdf Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A, (2012) Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61, 160–174. https://doi.org/10.1159/000342079
  • Buck B, Altermann E, Svingerud T, Klaenhammer TR. (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Applied And Environmental Microbiology, 71, 12, 8344–8351. https://aem.asm.org/content/aem/71/12/8344.full.pdf
  • Celebi B, Tas R, Aksit H, Celebioglu HU. (2020) Effects of loganic acid isolated from Vinca sonerii on surface hydrophobicity and auto-aggregation of probiotic bacteria Lactobacillus acidophilus and Lactobacillus rhamnosus. Erzincan University, Journal Of The Institute Of Science, 13, 1, 115–122. https://doi.org/10.18185/erzifbed.656155
  • Celebioglu HU, Ejby M, Majumder A, Købler C, Goh YJ, Thorsen K, Schmidt B, O’Flaherty S, Abou Hachem M, Lahtinen SJ, Jacobsen S, Klaenhammer TR, Brix S, Mølhave K, Svensson B. (2016) Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic. Proteomics, 16, 9, 1361-1375. https://onlinelibrary.wiley.com/doi/pdf/10.1002/pmic.201500212?casa_token=ddQWg6zo_4kAAAAA:JXZAoYTwdTZD3UsbB4hCsyK4AeDl7MJlGvjVtQEMqKAy6SRw2j0rHhmPRNqR8cbYT8k5bq3MxO9YFTI
  • Celebioglu HU, Delsoglio M, Brix S, Pessione E, Svensson B. (2012) Plant polyphenols stimulate adhesion to ıntestinal mucosa and ınduce proteome changes in the probiotic Lactobacillus acidophilus NCFM. Molecular Nutrition & Food Research, 62, 1-11. https://doi.org/10.1002/mnfr.201700638
  • Celebioglu HU, Olesen SV, Prehn K, Lahtinen SJ, Brix S, Abou Hachem M, Svensson B. (2017) Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM. Journal of Proteomics, 163, 102–110. https://doi.org/10.1016/j.jprot.2017.05.015
  • Dai J, Mumper RJ. (2010) Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 10, 7313–7352. https://doi.org/10.3390/molecules15107313
  • Del Re B, Sgorbati B, Miglioli M, Palenzona D. (2000, Dec) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in Applied Microbiology, 31, 6, 438–442. http://www.ncbi.nlm.nih.gov/pubmed/11123552
  • Demiray, E., Tülek, Y. (2012) Effect of Drying Process on the color of Red Pepper. Food Technologies Electronics Journal, 7, 3, 1-10. https://www.researchgate.net/publication/259494175_Kurutma_Isleminin_Kirmizi_Biberdeki_Renk_Maddelerine_Etkisi
  • Fernández-García E, Carvajal-Lérida I, Jarén-Galán M, Garrido-Fernández J, Pérez-Gálvez A, Hornero-Méndez D. (2012) Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Research International, 46, 2, 438–450. https://doi.org/10.1016/j.foodres.2011.06.007
  • Gill H, Prasad J. (2008) Probiotics, immunomodulation, and health benefits. Advances in Experimental Medicine and Biology, 606, 423–454. https://doi.org/10.1007/978-0-387-74087-4_17
  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. (2014) Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66
  • İsmailoğlu Ö, Öngün Yılmaz H. (2019) The Effect Of Probıotıcs Usage On Intestınal Mıcrobıota. Journal of Health Sciences and Research, 1, 1, 38–56. https://dergipark.org.tr/tr/download/article-file/750182
  • Kadakal Ç, Poyrazoğlu En, Yemiş O, Artik N. (2001) Pungent And Colour Compounds Of Red Peppers Pamukkale University, Journal Of Engıneerıng Scıences, 7, 3, 359–366. https://dergipark.org.tr/tr/download/article-file/191380
  • Köroğlu E, Çelebioğlu HU, Akşit H, Taş R. (2019) Insight into Effects of Ipolamiide isolated from Plantago euphratica on Probiotic Properties of Lactobacillus acidophilus and Lactobacillus rhamnosus. European Journal of Science and Technology, 17, 995–1000. https://doi.org/10.31590/ejosat.650013
  • Kos B, Susković J, Vuković S, Simpraga M, Frece J, Matosić S. (2003, Jan) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94, 981–987. https://pubmed.ncbi.nlm.nih.gov/12752805/
  • Krasowska A, Sigler K. (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Frontiers in Cellular and Infection Microbiology, 4, 112, 1-7. https://doi.org/10.3389/fcimb.2014.00112
  • Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH. (2004, Jun) The influence of cell and substratum surface hydrophobicities on microbial attachment. Journal of Biotechnology, 110, 3, 251–256. https://doi.org/10.1016/j.jbiotec.2004.02.012
  • O’Toole PW, Marchesi JR, Hill C. (2017) Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nature Microbiology, 2, 1–6. https://doi.org/10.1038/nmicrobiol.2017.57
  • Sanders ME, Klaenhammer TR. (2001, Feb) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. Journal of Dairy Science, 84, 2, 319–331. https://doi.org/10.3168/jds.S0022-0302(01)74481-5
  • Sezen AG. (2013) Effects of Prebiotics, Probiotics and Synbiotics upon Human and Animal Health. Ataturk University, Journal of Veterinary Sciences, 8, 3, 248–258. https://doi.org/10.17094/avbd.00011
  • Soomro AH, Masud T, Anwaar K. (2002) Role of lactic acid bacteria (lab) in food preservation and human health – A Review. Pakistan Journal of Nutrition, 1, 1, 20–24. https://doi.org/10.3923/pjn.2002.20.24
  • Vadillo-Rodríguez V, Busscher HJ, van der Mei HC, de Vries J, Norde W. (2005, Mar ) Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids Surface B Biointerfaces, 41, 1, 33–41. https://doi.org/10.1016/j.colsurfb.2004.10.028
  • van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ. (1987) The role of bacterial cell wall hydrophobicity in adhesion. Applied and Environmental Microbiology, 53, 8, 1893–1897. https://doi.org/10.1128/aem.53.8.1893-1897.1987
  • Vandenbergh P. (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiology Reviews, 12, 1–3, 221–237. https://doi.org/10.1016/0168-6445(93)90065-H
Year 2021, , 243 - 249, 28.06.2021
https://doi.org/10.31015/jaefs.2021.2.15

Abstract

Project Number

1919B011900220

References

  • Alp D, Kuleaşan H. (2019) Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World Journal of Microbiology and Biotechnology, 35, 10, 156. https://doi.org/10.1007/s11274-019-2730-x
  • Alp D, Kuleaşan H, Korkut Altıntaş A. (2020) The importance of the S-layer on the adhesion and aggregation ability of Lactic acid bacteria. Molecular Biology Reports, 47, 4, 3449–3457. https://doi.org/10.1007/s11033-020-05430-6
  • Akdoğan, A., Dinçer, C., Torun, M., Şahin, H., Topuz, A., Özdemir, F. Effects Of Carotenoid Compounds On Health. Turkey 10. Food Congress, Erzurum, Turkey; 21-23 May 2008; 1083-1086. http://www.gidadernegi.org/TR/Genel/240934952b257.pdf?DIL=1&BELGEANAH=1612&DOSYAISIM=240934952.pdf Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A, (2012) Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61, 160–174. https://doi.org/10.1159/000342079
  • Buck B, Altermann E, Svingerud T, Klaenhammer TR. (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Applied And Environmental Microbiology, 71, 12, 8344–8351. https://aem.asm.org/content/aem/71/12/8344.full.pdf
  • Celebi B, Tas R, Aksit H, Celebioglu HU. (2020) Effects of loganic acid isolated from Vinca sonerii on surface hydrophobicity and auto-aggregation of probiotic bacteria Lactobacillus acidophilus and Lactobacillus rhamnosus. Erzincan University, Journal Of The Institute Of Science, 13, 1, 115–122. https://doi.org/10.18185/erzifbed.656155
  • Celebioglu HU, Ejby M, Majumder A, Købler C, Goh YJ, Thorsen K, Schmidt B, O’Flaherty S, Abou Hachem M, Lahtinen SJ, Jacobsen S, Klaenhammer TR, Brix S, Mølhave K, Svensson B. (2016) Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic. Proteomics, 16, 9, 1361-1375. https://onlinelibrary.wiley.com/doi/pdf/10.1002/pmic.201500212?casa_token=ddQWg6zo_4kAAAAA:JXZAoYTwdTZD3UsbB4hCsyK4AeDl7MJlGvjVtQEMqKAy6SRw2j0rHhmPRNqR8cbYT8k5bq3MxO9YFTI
  • Celebioglu HU, Delsoglio M, Brix S, Pessione E, Svensson B. (2012) Plant polyphenols stimulate adhesion to ıntestinal mucosa and ınduce proteome changes in the probiotic Lactobacillus acidophilus NCFM. Molecular Nutrition & Food Research, 62, 1-11. https://doi.org/10.1002/mnfr.201700638
  • Celebioglu HU, Olesen SV, Prehn K, Lahtinen SJ, Brix S, Abou Hachem M, Svensson B. (2017) Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM. Journal of Proteomics, 163, 102–110. https://doi.org/10.1016/j.jprot.2017.05.015
  • Dai J, Mumper RJ. (2010) Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 10, 7313–7352. https://doi.org/10.3390/molecules15107313
  • Del Re B, Sgorbati B, Miglioli M, Palenzona D. (2000, Dec) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in Applied Microbiology, 31, 6, 438–442. http://www.ncbi.nlm.nih.gov/pubmed/11123552
  • Demiray, E., Tülek, Y. (2012) Effect of Drying Process on the color of Red Pepper. Food Technologies Electronics Journal, 7, 3, 1-10. https://www.researchgate.net/publication/259494175_Kurutma_Isleminin_Kirmizi_Biberdeki_Renk_Maddelerine_Etkisi
  • Fernández-García E, Carvajal-Lérida I, Jarén-Galán M, Garrido-Fernández J, Pérez-Gálvez A, Hornero-Méndez D. (2012) Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Research International, 46, 2, 438–450. https://doi.org/10.1016/j.foodres.2011.06.007
  • Gill H, Prasad J. (2008) Probiotics, immunomodulation, and health benefits. Advances in Experimental Medicine and Biology, 606, 423–454. https://doi.org/10.1007/978-0-387-74087-4_17
  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. (2014) Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66
  • İsmailoğlu Ö, Öngün Yılmaz H. (2019) The Effect Of Probıotıcs Usage On Intestınal Mıcrobıota. Journal of Health Sciences and Research, 1, 1, 38–56. https://dergipark.org.tr/tr/download/article-file/750182
  • Kadakal Ç, Poyrazoğlu En, Yemiş O, Artik N. (2001) Pungent And Colour Compounds Of Red Peppers Pamukkale University, Journal Of Engıneerıng Scıences, 7, 3, 359–366. https://dergipark.org.tr/tr/download/article-file/191380
  • Köroğlu E, Çelebioğlu HU, Akşit H, Taş R. (2019) Insight into Effects of Ipolamiide isolated from Plantago euphratica on Probiotic Properties of Lactobacillus acidophilus and Lactobacillus rhamnosus. European Journal of Science and Technology, 17, 995–1000. https://doi.org/10.31590/ejosat.650013
  • Kos B, Susković J, Vuković S, Simpraga M, Frece J, Matosić S. (2003, Jan) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94, 981–987. https://pubmed.ncbi.nlm.nih.gov/12752805/
  • Krasowska A, Sigler K. (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Frontiers in Cellular and Infection Microbiology, 4, 112, 1-7. https://doi.org/10.3389/fcimb.2014.00112
  • Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH. (2004, Jun) The influence of cell and substratum surface hydrophobicities on microbial attachment. Journal of Biotechnology, 110, 3, 251–256. https://doi.org/10.1016/j.jbiotec.2004.02.012
  • O’Toole PW, Marchesi JR, Hill C. (2017) Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nature Microbiology, 2, 1–6. https://doi.org/10.1038/nmicrobiol.2017.57
  • Sanders ME, Klaenhammer TR. (2001, Feb) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. Journal of Dairy Science, 84, 2, 319–331. https://doi.org/10.3168/jds.S0022-0302(01)74481-5
  • Sezen AG. (2013) Effects of Prebiotics, Probiotics and Synbiotics upon Human and Animal Health. Ataturk University, Journal of Veterinary Sciences, 8, 3, 248–258. https://doi.org/10.17094/avbd.00011
  • Soomro AH, Masud T, Anwaar K. (2002) Role of lactic acid bacteria (lab) in food preservation and human health – A Review. Pakistan Journal of Nutrition, 1, 1, 20–24. https://doi.org/10.3923/pjn.2002.20.24
  • Vadillo-Rodríguez V, Busscher HJ, van der Mei HC, de Vries J, Norde W. (2005, Mar ) Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids Surface B Biointerfaces, 41, 1, 33–41. https://doi.org/10.1016/j.colsurfb.2004.10.028
  • van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ. (1987) The role of bacterial cell wall hydrophobicity in adhesion. Applied and Environmental Microbiology, 53, 8, 1893–1897. https://doi.org/10.1128/aem.53.8.1893-1897.1987
  • Vandenbergh P. (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiology Reviews, 12, 1–3, 221–237. https://doi.org/10.1016/0168-6445(93)90065-H
There are 27 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Esra Çelik 0000-0003-1671-617X

Hasan Ufuk Celebioglu 0000-0001-7207-2730

Project Number 1919B011900220
Publication Date June 28, 2021
Submission Date September 24, 2020
Acceptance Date April 16, 2021
Published in Issue Year 2021

Cite

APA Çelik, E., & Celebioglu, H. U. (2021). Effects of capsanthin on surface hydrophobicity and auto-aggregation properties of Lactobacillus acidophilus and Lactobacillus rhamnosus. International Journal of Agriculture Environment and Food Sciences, 5(2), 243-249. https://doi.org/10.31015/jaefs.2021.2.15

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27