Research Article
BibTex RIS Cite

Influence of different manganese concentrations on eggplant (Solanum melongena L.) grown in a hydroponic system

Year 2022, Volume: 6 Issue: 2, 210 - 219, 15.06.2022
https://doi.org/10.31015/jaefs.2022.2.2

Abstract

The study aimed to evaluate the effect of three different manganese (Mn) concentrations on the plant growth, leaf chlorophyll, carotenoid content, photosynthetic activity, and root morphological development in eggplant (Solanum melongena L. ‘Adana cv. Dolmalık’ and ‘Köksal cv. F1’). Plants were grown continuously in aerated nutrient solution by using a deep-water culture (DWC) technique in a fully automated climate room. A randomized block design with three replications was used. Both excessive (400 µM) and insufficient (0.4 µM) Mn concentrations in the root zone reduced the shoot fresh and dry matter, branch number, leaf area, and leaf chlorophyll content in both examined genotypes in comparison with optimal Mn concentrations (200 µM). Köksal cv. F1 produced higher shoot and root biomasses, root:shoot ratio, total leaf number, leaf total chlorophyll and carotenoid content, total leaf area, and average root diameter at the low concentration of Mn. Conversely, Adana cv. Dolmalık produced significantly higher stem length, shoot and root biomasses, total root length and root volume at high Mn concentrations. Overall, both deficit and excess Mn nutrition could induce disorders in the growth and development of eggplant which may reduce crop yield.

Thanks

We would like to thank all the staff members of the Plant Physiology Laboratory of Erciyes University, Turkey, for their technical support and for supplying all facilities during the experiments.

References

  • Adamczewska-Sowinska, K., Kotota, E. (2010). Yielding and nutritive value of field cultivated eggplant with the use of living and synthetic mulches. Acta Sci. Pol. Hort. Cult., 9(3):191-199.
  • Akıncı, I.E., Akıncı, S., Yılmaz, K. (2010). Manganese toxicity on manganese accumulation and mineral composition of tomato (Solanum lycopersicum L.). Asian J. Chem., 22, 9, 6991-6997.
  • Boojar, M.M.A., Goodarzi, F. (2008). Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine. Ecotox. Environ. Saf., 71, 692–699.
  • Broadley, M., Brown, P., Cakmak, I., Rengel, Z., Zhao, F. (2012). Function of nutrients: micronutrients. In: Marschner, P. (Ed.), Marschner’S Mineral Nutrition of Higher Plants, third edition. Academic Press, San Diego, 191–248.
  • Bromfield, S.M. (1978). The effect of manganese-oxidizing bacteria and pH on the availability of manganous ions and manganese oxides to oats in nutrient solutions. Plant Soil, 49:23–29.
  • Buchanan, R., Grusen, B., Jones, W. (2000). Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Maryland, USA.
  • Cao, G., Sofic, E., Prior, R.L. (1996). Antioxidant capacity of tea and common vegetables. J Agr Food Chem, 44(11):3426- 3431.
  • Ceballos-Laitaa, L., Gutierrez-Carbonell, E., Imai, H., Abadía, A., Uemura, M., Abadía, J., López-Millán, A.F. (2018). Effects of manganese toxicity on the protein profile of tomato (Solanum lycopersicum) roots as revealed by two complementary proteomic approaches, two-dimensional electrophoresis, and shotgun analysis. Journal of Proteomics, 185, 51–63
  • Chohura, P., Kołota, E., Komosa, E. (2009). Effect of fertilization with Fe chelates on the state of iron nutrition of greenhouse tomato. J. Elem., 14(4): 657-664.
  • Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., Holzer, R., Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environ. Exp. Bot., 52: 253-266.
  • Doncheva, Sn., Poschenrieder, C., Stoyanova, Zl., Georgieva, K., Velichkova, M., Barceló, J. (2009). Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ. Exp. Bot., 65: 189-197. https://doi.org/10.1016/j.envexpbot.2008.11.006
  • Ducic, T., Polle, A. (2005). Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol., 17: 103-112. https://doi.org/10.1590/S1677-04202005000100009
  • Ducĭć, T., Leinemann, L., Finkeldey, R., Polle, A. (2006). Uptake and translocation of manganese in seedlings of two varieties of Douglas fir (Pseudotsuga menziesii var. viridis and glauca). New Phytol., 170, 11–20.
  • Ducic, T., Polle, A. (2007). Manganese toxicity in two varieties of Douglas fir (Pseudotsuga menziesii var. viridis and glauca) seedlings as affected by phosphorus supply. Funct. Plant Biol., 34, 31–40.
  • FAO (2019). FAOSTAT Agricultural Database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 23 November 2021).
  • Graham, R.D., Webb, M.J. (2018). Micronutrients and disease resistance and tolerance in plants.
  • Gürbüz N, Uluişik S, Frary A, Frary A, Doğanlar S. (2018). Health benefits and bioactive compounds of eggplant. Food Chem; 268: 602–10.
  • Hebbern, C.A., Pedas, P., Schjoerring, J.K., Knudsen, L., Husted, S. (2005). Genotypic differences in manganese efficiency: field experiments with winter barley (Hordeum vulgare L.). Plant Soil, 272, 233–244.
  • Heine, G., Max, J.F.J., Führs, H., Moran-Puente, D.W., Heintz, D., Horst, W.J. (2011). Effect of manganese on the resistance of tomato to Pseudocercospora fuligena. J. Plant Nutr. Soil Sci., doi:10.1002/jpln.201000440.
  • Horst, W.J. (1988). The physiology of manganese toxicity. In: Manganese in Soil and Plants. Graham R.D., Hannam R.J., Uren N.C. (Eds.), Kluwer Academic Publ., Dordrecht, The Netherlands.
  • Humphries, J.M., Stangoulis, J.C.R., Graham, R.D. (2007). Manganese In: Handbook of plant nutrition. A.V. Barker, D.J. Pilbeam, Taylor & Francis Group (ed.), 351-374.
  • Khabaz-Saberi, H., Rengel, Z., Wilson, R., Setter, T.L. (2010). Variation of tolerance to manganese toxicity in Australian hexaploid wheat. J. Plant Nutr. Soil Sci., 173, 103–112.
  • Kitao, M., Lei, T.T., Nakamura, T., Koike, T. (2001). Manganese toxicity as indicated by visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica). Environ. Pollut., 111, 89–94.
  • Kleiber, T. (2014). Effect of manganese on nutrient content in tomato (Lycopersicon esculentum Mill.) leaves. J. Elem., 115–126.
  • Kołota, E., Chohura, P., Komosa, A. (2013). Efficiency of chelate forms of micronutrients in nutrition of greenhouse tomato grown in rockwool. J. Elem., 18(4): 635-647. DOI: 10.5601/jelem.2013.18.4.525
  • Koponen, J.M., Happonen, A.M., Mattila, P.H., Törrönen, R. (2007). Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agr Food Chem, 55(4):1612-1619.
  • Lee, T.J., Luitel, B.P., Kang, W.H. (2011). Growth and physiological response to manganese toxicity in Chinese cabbage (Brassica rapa L. ssp. campestris). Hort. Environ. Biotechnol., 52(3): 252-258.
  • Li, Q., Chen, L.S., Jiang, H.X., Tang, N., Yang, L.T., Lin, Z.H., Li, Y., Yang, G.H. (2010). Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant. Biol., 10(42): 1-16.
  • Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 148:350–382.
  • Lidon, F.C., Barreiro, M.G., Ramalho, J.C. (2004). Manganese accumulation in rice: implications for photosynthetic functioning. J. Plant Physiol., 161(11): 1235-1244.
  • Long, L., Kristensen, R.K., Guo, J., Chen, F., Pedas, P.R., Zhang, G., Schjoerring, J.K., Yuan, L. (2021). Assessing the variation in traits for manganese deficiency tolerance among maize genotypes. Environmental and Experimental Botany, 183, 104344.
  • Lynch, J.P. (2013). Steep, cheap, and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot., 112, 347–357.
  • Maher, M.J., Thomson, D. (1991). Growth and manganese content of tomato (Lycopersicon esculentum) seedlings grown in Sitka spruce (Picea sitchensis (Bong.) Carr.) bark substrate. Scientia Horticuiturae, 48, 223-231.
  • Marschner, P. (2012). Marschner’s mineral nutrition of higher plants, 3rd edn. https://doi.org/10.1016/C2009-0-63043-9.
  • Martínez-Ispizua E, Calatayud Á, Marsal JI, et al. (2021). Phenotyping Local Eggplant Varieties: Commitment to Biodiversity and Nutritional Quality Preservation. Front Plant Sci; 12. DOI:10.3389/fpls.2021.696272.
  • McHargue, J.S. (1926). Manganese and Plant Growth. Industrial and Engineering Chemistry, 18, 2.
  • Millaleo, R., Reyes-Diaz, M., Ivanov, A.G., Mora, M.L., Alberdi, M. (2010). Manganese as essential and toxic element for plants: transport, accumulation, and resistance mechanisms. J Soil Sci Plant Nutr, 10: 470–481.
  • Moroni, J.S.; Scott, B.J.; Wratten, N. (2003). Differential tolerance of high manganese among rapeseed genotypes. Plant Soil, 253, 507–519.
  • Mou, D., Yao, Y., Yang, Y., Zhang, Y., Tian, C., Achal, V. (2011). Plant high tolerance to excess manganese related with root growth, manganese distribution and antioxidative enzyme activity in three grape cultivars. Ecotoxicol. Environ. Saf., 74, 776–786.
  • Parashar, A., Yusuf, M., Fariduddin, Q., Ahmad, A. (2014). Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol, 70:551–558.
  • Przybysz, A., Wrochna, M., Gawrońska, H., Małecka-Przybysz, M., Pietrzyk, S., Gawroński, S.W. (2017). Effect of manganese on yield and quality of hydroponically grown lettuce. J. Elem., 22(1): 315-327. DOI: 10.5601/jelem.2016.21.1.1127
  • Rajpoot, R., Rani, A., Srivastava, R.K., Pandey, P., Dubey, R.S. (2018). Protective role of Mentha arvensis aqueous extract against manganese induced toxicity by reducing Mn translocation and promoting antioxidative defense in growing Indica rice seedlings. J Crop Sci Biotechnol, 21:353–366.
  • Rezai, K., Farboodnia, T. (2008). The response of pea plant to manganese toxicity in solution culture. Agric. J., 3(3): 248-251.
  • Sabatino, L. (2020) ‘Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems’, Agronomy, 10(9), pp. 1–24. doi: https://doi.org/10.3390/agronomy9060298 .
  • Sadana, U.S., Lata, K., Claassen, N. (2002). Manganese efficiency of wheat cultivars as related to root growth and internal manganese requirement. J. Plant Nutr., 25, 2677–2688.
  • Sánchez-Castillo, C.P., Englyst, H.N., Hudson, G.J., Lara, J.J., Solano, M.L., Munguía, J.L., James, W.P. (1999). The non-starch polysaccharide content of Mexican foods. J Food Compos Anal, 12(4):293-314.
  • Sarkar, D., Pandey, S.K., Sud, K.C. (2004). In vitro characterization of manganese toxicity in relation to phosphorus nutrition in potato (Solanum tuberosum). Plant Sci., 167, 977–986.
  • Savvas, D. and Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry - A review’, European Journal of Horticultural Science, 83(5), 280–293. doi: http://dx.doi.org/10.17660/eJHS.2018/83.5.2
  • Savvas, D., Papastavrou, D., Ntatsi, G., Ropokis, A., Olympios, C. (2009). Interactive effects of grafting and manganese supply on growth, yield, and nutrient uptake by tomato. Hort. Sci., 44(7): 1978-1982.
  • Schmidt, S.B., Powikrowska, M., Krogholm, K.S., Naumann-Busch, B., Schjoerring, J.K., Husted, S., Jensen, P.E., Pedas, P.R. (2016). Photosystem II functionality in barley responds dynamically to changes in leaf manganese status. Front. Plant Sci., 7, 1772.
  • Schmidt, S.B., George, T.S., Brown, L.K., Booth, A., Wishart, J., Hedley, P.E., Martin, P., Russell, J., Husted, S. (2019). Ancient barley landraces adapted to marginal soils demonstrate exceptional tolerance to manganese limitation. Ann. Bot., 123, 831–843.
  • Schmidt, S.B., Eisenhut, M., Schneider, A. (2020). Chloroplast transition metal regulation for efficient photosynthesis. Trends Plant Sci., 25, 817–828. https://doi.org/ 10.1016/j.tplants.2020.03.003.
  • Shanahan, J.O., Brummer, J.E., Leininger, W.C., Paschke, M.W. (2007). Manganese and zinc toxicity thresholds for mountain and Geyer willow. Int. J. Phytoremediation, 9, 437–452.
  • Shenker, M., Plessner, O.E., Tel-Or E. (2004). Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J. Plant Physiol., 161:197–202.
  • Silber, A., Bar-Tal, A., Levkovitch, I., Bruner, M., Yehezkel, H., Shmuel, D., Cohen, S., Matan, E., Karni, L., Aktas, H., Turhan, E., Aloni, B. (2009). Manganese nutrition of pepper (Capsicum annuum L.): Growth, Mn uptake and fruit disorder incidence. Sci. Hortic., https://doi.org/10.1016/j.scienta.2009.08.005
  • Sonneveld, C., Voogt, S.J. (1980). The application of manganese in nutrient solutions for tomatoes grown in a recirculating system. Acta Hort., 98:171–178.
  • Sutarno, H., Danimihardja, S., Grubben, G.J.H. (1993). Solanum melongena L. in: Plant resources of south Asia. No. 8. Vegetables. Siemonsma, J.S. & K. Piluek. Pudoc Scientific Publisger, Wageningen, The Nether Lands, 255-258.
  • Wang, Y.X., Wu, P., Wu, Y.R., Yan, X.L. (2002). Molecular marker analysis of manganese toxicity tolerance in rice under greenhouse conditions. Plant Soil, 238, 227–233.
  • Whitaker, B.D., Stommel, J.R. (2003). Distribution of hydroxycinnamic acid conjugates in fruit of eggplant (Solanum melongena L.) cultivars. J Agr Food Chem, 51(11):3448-3454.
  • Yang, S.X., Deng, H., Li, M.S. (2008). Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ., 54, 441–446.
  • Yao, Y., Xu, G., Mou, D., Wang, J., Ma, J. (2012). Subcellular Mn compartation, anatomic and biochemical changes of two grape varieties in response to excess manganese. Chemosphere, 89, 150–157.
Year 2022, Volume: 6 Issue: 2, 210 - 219, 15.06.2022
https://doi.org/10.31015/jaefs.2022.2.2

Abstract

References

  • Adamczewska-Sowinska, K., Kotota, E. (2010). Yielding and nutritive value of field cultivated eggplant with the use of living and synthetic mulches. Acta Sci. Pol. Hort. Cult., 9(3):191-199.
  • Akıncı, I.E., Akıncı, S., Yılmaz, K. (2010). Manganese toxicity on manganese accumulation and mineral composition of tomato (Solanum lycopersicum L.). Asian J. Chem., 22, 9, 6991-6997.
  • Boojar, M.M.A., Goodarzi, F. (2008). Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine. Ecotox. Environ. Saf., 71, 692–699.
  • Broadley, M., Brown, P., Cakmak, I., Rengel, Z., Zhao, F. (2012). Function of nutrients: micronutrients. In: Marschner, P. (Ed.), Marschner’S Mineral Nutrition of Higher Plants, third edition. Academic Press, San Diego, 191–248.
  • Bromfield, S.M. (1978). The effect of manganese-oxidizing bacteria and pH on the availability of manganous ions and manganese oxides to oats in nutrient solutions. Plant Soil, 49:23–29.
  • Buchanan, R., Grusen, B., Jones, W. (2000). Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Maryland, USA.
  • Cao, G., Sofic, E., Prior, R.L. (1996). Antioxidant capacity of tea and common vegetables. J Agr Food Chem, 44(11):3426- 3431.
  • Ceballos-Laitaa, L., Gutierrez-Carbonell, E., Imai, H., Abadía, A., Uemura, M., Abadía, J., López-Millán, A.F. (2018). Effects of manganese toxicity on the protein profile of tomato (Solanum lycopersicum) roots as revealed by two complementary proteomic approaches, two-dimensional electrophoresis, and shotgun analysis. Journal of Proteomics, 185, 51–63
  • Chohura, P., Kołota, E., Komosa, E. (2009). Effect of fertilization with Fe chelates on the state of iron nutrition of greenhouse tomato. J. Elem., 14(4): 657-664.
  • Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., Holzer, R., Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environ. Exp. Bot., 52: 253-266.
  • Doncheva, Sn., Poschenrieder, C., Stoyanova, Zl., Georgieva, K., Velichkova, M., Barceló, J. (2009). Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ. Exp. Bot., 65: 189-197. https://doi.org/10.1016/j.envexpbot.2008.11.006
  • Ducic, T., Polle, A. (2005). Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol., 17: 103-112. https://doi.org/10.1590/S1677-04202005000100009
  • Ducĭć, T., Leinemann, L., Finkeldey, R., Polle, A. (2006). Uptake and translocation of manganese in seedlings of two varieties of Douglas fir (Pseudotsuga menziesii var. viridis and glauca). New Phytol., 170, 11–20.
  • Ducic, T., Polle, A. (2007). Manganese toxicity in two varieties of Douglas fir (Pseudotsuga menziesii var. viridis and glauca) seedlings as affected by phosphorus supply. Funct. Plant Biol., 34, 31–40.
  • FAO (2019). FAOSTAT Agricultural Database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 23 November 2021).
  • Graham, R.D., Webb, M.J. (2018). Micronutrients and disease resistance and tolerance in plants.
  • Gürbüz N, Uluişik S, Frary A, Frary A, Doğanlar S. (2018). Health benefits and bioactive compounds of eggplant. Food Chem; 268: 602–10.
  • Hebbern, C.A., Pedas, P., Schjoerring, J.K., Knudsen, L., Husted, S. (2005). Genotypic differences in manganese efficiency: field experiments with winter barley (Hordeum vulgare L.). Plant Soil, 272, 233–244.
  • Heine, G., Max, J.F.J., Führs, H., Moran-Puente, D.W., Heintz, D., Horst, W.J. (2011). Effect of manganese on the resistance of tomato to Pseudocercospora fuligena. J. Plant Nutr. Soil Sci., doi:10.1002/jpln.201000440.
  • Horst, W.J. (1988). The physiology of manganese toxicity. In: Manganese in Soil and Plants. Graham R.D., Hannam R.J., Uren N.C. (Eds.), Kluwer Academic Publ., Dordrecht, The Netherlands.
  • Humphries, J.M., Stangoulis, J.C.R., Graham, R.D. (2007). Manganese In: Handbook of plant nutrition. A.V. Barker, D.J. Pilbeam, Taylor & Francis Group (ed.), 351-374.
  • Khabaz-Saberi, H., Rengel, Z., Wilson, R., Setter, T.L. (2010). Variation of tolerance to manganese toxicity in Australian hexaploid wheat. J. Plant Nutr. Soil Sci., 173, 103–112.
  • Kitao, M., Lei, T.T., Nakamura, T., Koike, T. (2001). Manganese toxicity as indicated by visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica). Environ. Pollut., 111, 89–94.
  • Kleiber, T. (2014). Effect of manganese on nutrient content in tomato (Lycopersicon esculentum Mill.) leaves. J. Elem., 115–126.
  • Kołota, E., Chohura, P., Komosa, A. (2013). Efficiency of chelate forms of micronutrients in nutrition of greenhouse tomato grown in rockwool. J. Elem., 18(4): 635-647. DOI: 10.5601/jelem.2013.18.4.525
  • Koponen, J.M., Happonen, A.M., Mattila, P.H., Törrönen, R. (2007). Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agr Food Chem, 55(4):1612-1619.
  • Lee, T.J., Luitel, B.P., Kang, W.H. (2011). Growth and physiological response to manganese toxicity in Chinese cabbage (Brassica rapa L. ssp. campestris). Hort. Environ. Biotechnol., 52(3): 252-258.
  • Li, Q., Chen, L.S., Jiang, H.X., Tang, N., Yang, L.T., Lin, Z.H., Li, Y., Yang, G.H. (2010). Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant. Biol., 10(42): 1-16.
  • Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 148:350–382.
  • Lidon, F.C., Barreiro, M.G., Ramalho, J.C. (2004). Manganese accumulation in rice: implications for photosynthetic functioning. J. Plant Physiol., 161(11): 1235-1244.
  • Long, L., Kristensen, R.K., Guo, J., Chen, F., Pedas, P.R., Zhang, G., Schjoerring, J.K., Yuan, L. (2021). Assessing the variation in traits for manganese deficiency tolerance among maize genotypes. Environmental and Experimental Botany, 183, 104344.
  • Lynch, J.P. (2013). Steep, cheap, and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot., 112, 347–357.
  • Maher, M.J., Thomson, D. (1991). Growth and manganese content of tomato (Lycopersicon esculentum) seedlings grown in Sitka spruce (Picea sitchensis (Bong.) Carr.) bark substrate. Scientia Horticuiturae, 48, 223-231.
  • Marschner, P. (2012). Marschner’s mineral nutrition of higher plants, 3rd edn. https://doi.org/10.1016/C2009-0-63043-9.
  • Martínez-Ispizua E, Calatayud Á, Marsal JI, et al. (2021). Phenotyping Local Eggplant Varieties: Commitment to Biodiversity and Nutritional Quality Preservation. Front Plant Sci; 12. DOI:10.3389/fpls.2021.696272.
  • McHargue, J.S. (1926). Manganese and Plant Growth. Industrial and Engineering Chemistry, 18, 2.
  • Millaleo, R., Reyes-Diaz, M., Ivanov, A.G., Mora, M.L., Alberdi, M. (2010). Manganese as essential and toxic element for plants: transport, accumulation, and resistance mechanisms. J Soil Sci Plant Nutr, 10: 470–481.
  • Moroni, J.S.; Scott, B.J.; Wratten, N. (2003). Differential tolerance of high manganese among rapeseed genotypes. Plant Soil, 253, 507–519.
  • Mou, D., Yao, Y., Yang, Y., Zhang, Y., Tian, C., Achal, V. (2011). Plant high tolerance to excess manganese related with root growth, manganese distribution and antioxidative enzyme activity in three grape cultivars. Ecotoxicol. Environ. Saf., 74, 776–786.
  • Parashar, A., Yusuf, M., Fariduddin, Q., Ahmad, A. (2014). Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol, 70:551–558.
  • Przybysz, A., Wrochna, M., Gawrońska, H., Małecka-Przybysz, M., Pietrzyk, S., Gawroński, S.W. (2017). Effect of manganese on yield and quality of hydroponically grown lettuce. J. Elem., 22(1): 315-327. DOI: 10.5601/jelem.2016.21.1.1127
  • Rajpoot, R., Rani, A., Srivastava, R.K., Pandey, P., Dubey, R.S. (2018). Protective role of Mentha arvensis aqueous extract against manganese induced toxicity by reducing Mn translocation and promoting antioxidative defense in growing Indica rice seedlings. J Crop Sci Biotechnol, 21:353–366.
  • Rezai, K., Farboodnia, T. (2008). The response of pea plant to manganese toxicity in solution culture. Agric. J., 3(3): 248-251.
  • Sabatino, L. (2020) ‘Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems’, Agronomy, 10(9), pp. 1–24. doi: https://doi.org/10.3390/agronomy9060298 .
  • Sadana, U.S., Lata, K., Claassen, N. (2002). Manganese efficiency of wheat cultivars as related to root growth and internal manganese requirement. J. Plant Nutr., 25, 2677–2688.
  • Sánchez-Castillo, C.P., Englyst, H.N., Hudson, G.J., Lara, J.J., Solano, M.L., Munguía, J.L., James, W.P. (1999). The non-starch polysaccharide content of Mexican foods. J Food Compos Anal, 12(4):293-314.
  • Sarkar, D., Pandey, S.K., Sud, K.C. (2004). In vitro characterization of manganese toxicity in relation to phosphorus nutrition in potato (Solanum tuberosum). Plant Sci., 167, 977–986.
  • Savvas, D. and Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry - A review’, European Journal of Horticultural Science, 83(5), 280–293. doi: http://dx.doi.org/10.17660/eJHS.2018/83.5.2
  • Savvas, D., Papastavrou, D., Ntatsi, G., Ropokis, A., Olympios, C. (2009). Interactive effects of grafting and manganese supply on growth, yield, and nutrient uptake by tomato. Hort. Sci., 44(7): 1978-1982.
  • Schmidt, S.B., Powikrowska, M., Krogholm, K.S., Naumann-Busch, B., Schjoerring, J.K., Husted, S., Jensen, P.E., Pedas, P.R. (2016). Photosystem II functionality in barley responds dynamically to changes in leaf manganese status. Front. Plant Sci., 7, 1772.
  • Schmidt, S.B., George, T.S., Brown, L.K., Booth, A., Wishart, J., Hedley, P.E., Martin, P., Russell, J., Husted, S. (2019). Ancient barley landraces adapted to marginal soils demonstrate exceptional tolerance to manganese limitation. Ann. Bot., 123, 831–843.
  • Schmidt, S.B., Eisenhut, M., Schneider, A. (2020). Chloroplast transition metal regulation for efficient photosynthesis. Trends Plant Sci., 25, 817–828. https://doi.org/ 10.1016/j.tplants.2020.03.003.
  • Shanahan, J.O., Brummer, J.E., Leininger, W.C., Paschke, M.W. (2007). Manganese and zinc toxicity thresholds for mountain and Geyer willow. Int. J. Phytoremediation, 9, 437–452.
  • Shenker, M., Plessner, O.E., Tel-Or E. (2004). Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J. Plant Physiol., 161:197–202.
  • Silber, A., Bar-Tal, A., Levkovitch, I., Bruner, M., Yehezkel, H., Shmuel, D., Cohen, S., Matan, E., Karni, L., Aktas, H., Turhan, E., Aloni, B. (2009). Manganese nutrition of pepper (Capsicum annuum L.): Growth, Mn uptake and fruit disorder incidence. Sci. Hortic., https://doi.org/10.1016/j.scienta.2009.08.005
  • Sonneveld, C., Voogt, S.J. (1980). The application of manganese in nutrient solutions for tomatoes grown in a recirculating system. Acta Hort., 98:171–178.
  • Sutarno, H., Danimihardja, S., Grubben, G.J.H. (1993). Solanum melongena L. in: Plant resources of south Asia. No. 8. Vegetables. Siemonsma, J.S. & K. Piluek. Pudoc Scientific Publisger, Wageningen, The Nether Lands, 255-258.
  • Wang, Y.X., Wu, P., Wu, Y.R., Yan, X.L. (2002). Molecular marker analysis of manganese toxicity tolerance in rice under greenhouse conditions. Plant Soil, 238, 227–233.
  • Whitaker, B.D., Stommel, J.R. (2003). Distribution of hydroxycinnamic acid conjugates in fruit of eggplant (Solanum melongena L.) cultivars. J Agr Food Chem, 51(11):3448-3454.
  • Yang, S.X., Deng, H., Li, M.S. (2008). Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ., 54, 441–446.
  • Yao, Y., Xu, G., Mou, D., Wang, J., Ma, J. (2012). Subcellular Mn compartation, anatomic and biochemical changes of two grape varieties in response to excess manganese. Chemosphere, 89, 150–157.
There are 61 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Abdullah Ulaş 0000-0001-9029-031X

Yusuf Cem Yücel 0000-0001-6183-0129

Firdes Ulaş 0000-0001-6692-8424

Publication Date June 15, 2022
Submission Date February 8, 2022
Acceptance Date April 16, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Ulaş, A., Yücel, Y. C., & Ulaş, F. (2022). Influence of different manganese concentrations on eggplant (Solanum melongena L.) grown in a hydroponic system. International Journal of Agriculture Environment and Food Sciences, 6(2), 210-219. https://doi.org/10.31015/jaefs.2022.2.2


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27