Research Article
BibTex RIS Cite

The effect of different climatic zones on fatty acid profile of Ricinus communis seed oil

Year 2022, Volume: 6 Issue: 2, 263 - 270, 15.06.2022
https://doi.org/10.31015/jaefs.2022.2.9

Abstract

Castor bean has not been well studied in different genotypes and geographic zones despite its application in industry and medicine. Recently, the use of castor beans as biodiesel and industry makes this plant a point of interest for researchers. However, more studies are needed for evaluating genotypes from different ecologies. The effect of climatic zones, Adana and Mersin, on the fatty acid profile of chaster bean seed oils was investigated. It was found that locations significantly influenced the fatty acid content. The main fatty acid was ricinoleic acid with 84.63% and 86.87% in both Adana and Mersin locations, respectively. Despite ricinoleic acid, Adana had higher concentrations of Palmitic acid (1.97%), Stearic acid (2.1%), Oleic acid (4.4%), and Palmitoleic acid (2.29%) whereas Linolenic acid (5.83%), and Ricinoleic acid (86.87%) was high in Mersin. These results showed that climate affects the fatty acid contents of studied caster oil. This study will help in the selection of proper caster oil cultivars not only in these regions but in other regions of the world as well.

References

  • Adeniyi, O.T., Ahmed, A.S., Fasina, F.O., Mcgaw, L.J., Eloff, J.N., Naidoo, V. (2018). Pesticidal plants as a possible alternative to synthetic acaricides in tick control: a systematic review and meta-analysis. Ind. Crops Prod., 123: 779-806. Doi: https://doi.org/10.1016/j.indcrop.2018.06.075
  • Akpan, U.G., Jimoh, A. & Mohammed, A.D. (2006). Extraction, Characterization and Modification of Castor Seed Oil. Leonardo Journal of Sciences, 8: 43-52. Retrieved from http://ljs.academicdirect.org/
  • Alyari, H., Shekari F., and Shekari, F. (2000). Oil Seed Crops (Agronomy and Physiology), Amidi Press, 182P, Tabriz, Iran. (in Persian).
  • Awais, M., Musmar, S. E. A., Kabir, F., Batool, I., Rasheed, M. A., Jamil, F., & Tlili, I. (2020). Biodiesel Production from Melia azedarach and Ricinus communis Oil by Transesterification Process. Catalysts, 10(4) : 427. Doi: https://doi.org/10.3390/catal10040427
  • Carolina, A., Herliyana, E. N., & Sulastri, H. (2019). Antifungal activity of castor (Ricinus communis L.) leaves methanolic extract on Aspergillus niger. International Food Research Journal, 26(2) : 595-598. Retrieved from http://www.ifrj.upm.edu.my/
  • Carrino, L., Visconti, D., Fiorentino, N., & Fagnano, M. (2020). Biofuel Production with Castor Bean: A Win–Win Strategy for Marginal Land. Agronomy, 10(11): 1690. https://doi.org/10.3390/agronomy10111690
  • Chan, A. P., Crabtree, J., Zhao, Q., Lorenzi, H., Orvis, J., Puiu, D., & Rabinowicz, P. D. (2010). Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 28(9): 951-956. Doi: https://doi.org/10.1038/nbt.1674.
  • Conceicao, M.M., Candeia, R.A., Silva, F.C., Bezerra, A.F., Fernandes Jr., V.J. & Souza, A.G. (2007). Thermoanalytical characterization of castor oil biodiesel. Renewable and Sustainable Energy Reviews, 11: 964-975. Doi: https://doi.org/10.1016/j.rser.2005.10.001
  • Dave, G. (2002): Castor Oil and Its Chemistry. G.R.O’Shea Company, Itasca, Illinois, USA.
  • Demirtas, I., Pelvan, E., Ozdemir, I. S., Alasalvar, C., & Ertas, E. (2013). Lipid characteristics and phenolics of native grape seed oils grown in Turkey. European Journal of Lipid Science and Technology, 115(6): 641-647. Doi: https://doi.org/10.1002/ejlt.201200159
  • El-Naggar, M. H., Elgaml, A., Abdel Bar, F. M., & Badria, F. A. (2019). Antimicrobial and antiquorum-sensing activity of Ricinus communis extracts and ricinine derivatives. Natural Product Research, 33(11): 1556-1562. Doi: https://doi.org/10.1080/14786419.2017.1423306
  • Foglia, T.A., Jones, K.C. & Sonnet, P.E. 2000. Selectivity of lipases: isolation of fatty acids from castor, coriander, and meadowfoam oils. European Journal of Lipid Science Technology 102(10): 612-617. Doi: https://doi.org/10.1002/1438-9312(200010)102:10<612::AID-EJLT612>3.0.CO;2-U
  • Franke, H., Scholl, R., & Aigner, A. (2019). Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and “Papyrus Ebers” to modern perspectives and “poisonous plant of the year 2018”. Naunyn-Schmiedeberg's Arch. Pharmacol., 392(10): 1181-1208.Doi: https://doi.org/10.1007/s00210-019-01691-6
  • Gahukar, R.T., 2017. A review of castor-derived products used in crop and seed protection. Phytoparasitica, 45: 655-666. Doi: https://doi.org/10.1007/s12600-017-0625-7
  • Goytia-Jime´nez MA, Gallegos-Goytia CH, Nu´n˜ez-Colı´n CA (2011) Relationship among climatic variables with the morphology and oil content of castor oil plant (Ricinus communis L.) seeds from Chiapas. Rev. Chapingo Serie Ciencias Forestales Amb. 17, 41-48. Doi: https://doi.org/10.5154/r.rchscfa.2010.08.048
  • Gupta, S.S., Hilditch, T.P. & Riley, J.P. 1951. The Fatty Acids and Glycerides of Castor Oil. Journal of The Science of Food and Agriculture, 2(6): 245-251. Doi: https://doi.org/10.1002/jsfa.2740020603
  • Javanshir, A., Karimi, E., Maragheh, A. D., & Tabrizi, M. H. (2020). The antioxidant and anticancer potential of Ricinus communis L. essential oil nanoemulsions. Journal of Food Measurement and Characterization, 1-10. Doi: https://doi.org/10.1007/s11694-020-00385-5
  • Jena, J., & Gupta, A. K. (2012). Ricinus communis Linn: a phytopharmacological review. International Journal of Pharmacy and Pharmaceutical Sciences, 4(4): 25-29.
  • Kaur, R., & Bhaskar, T. (2020). Potential of castor plant (Ricinus communis) for production of biofuels, chemicals, and value-added products. In Waste biorefinery (pp. 269-310). Elsevier. Doi: https://doi.org/10.1016/j.jenvman.2012.10.023
  • Khalid, N., Masood, A., Noman, A., Aqeel, M., & Qasim, M. (2019). Study of the responses of two biomonitor plant species (Datura alba & Ricinus communis) to roadside air pollution. Chemosphere, 235: 832-841. Doi: https://doi.org/10.1016/j.chemosphere.2019.06.143
  • Lima, R.L.S., Severino, L.S., Sampaio, L.R., Valdinei Sofiatti, V.S., Gomes, J.A., Beltrao, N.E.M. (2011). Blends of castor meal and castor husks for optimized use as organic fertilizer. Ind. Crops Prod. 33: 364-368. Doi: https://doi.org/10.1016/j.indcrop.2010.11.008
  • Nangbes, J. G., Nvau, J. B., Buba, W. M., & Zukdimma, A. N. (2013). Extraction and Characterization of Castor (Ricinus Communis) Seed Oil. Retrieved from https://www.ijset.net/journal/786.pdf
  • Ogunniyi, D.S. 2006. Castor Oil: A vital industrial raw material. Bioresource Technology 97: 1086-1091. Doi: https://doi.org/10.1016/j.biortech.2005.03.028
  • Olivares, A. R., Carrillo-González, R., González-Chávez, M. D. C. A., & Hernández, R. M. S. (2013). Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. Journal of Environmental Management, 114: 316-323. Doi: https://doi.org/10.1016/j.jenvman.2012.10.023
  • Onemli, F. (2012). Impact of climate change on oil fatty acid composition of peanut (Arachis hypogaea L.) in three market classes. Chilean Journal of Agricultural Research, 72(4): 483. Doi: http://dx.doi.org/10.4067/S0718-58392012000400004
  • Osorio-González, C. S., Gómez-Falcon, N., Sandoval-Salas, F., Saini, R., Brar, S. K., & Ramírez, A. A. (2020). Production of Biodiesel from Castor Oil: A Review. Energies, 13(10): 2467. Doi: https://doi.org/10.3390/en13102467
  • Palanivel, T. M., Pracejus, B., & Victor, R. (2020). Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Environmental Science and Pollution Research, 1-11. Doi: https://doi.org/10.1007/s11356-020-08319-w
  • Perdomo, F. A., Acosta-Osorio, A. A., Herrera, G., Vasco-Leal, J. F., Mosquera-Artamonov, J. D., Millan-Malo, B., & Rodriguez-Garcia, M. E. (2013). Physicochemical characterization of seven Mexican Ricinus communis L. seeds & oil contents. Biomass and Bioenergy, 48: 17-24. Doi: https://doi.org/10.1016/j.biombioe.2012.10.020
  • Puthli, M.S., Rathod, V.K. & Pandit, A.B. (2006). Enzymatic Hidrolysis of Castor Oil: Process Intensification Studies. Biochemical Engineering Journal, 1-11. Doi: https://doi.org/10.1016/j.bej.2006.05.017
  • Rajkumar, M., Freitas, S.H., (2008). Influence of metal resistant-plant growthpromoting bacteria on the growth of Ricinus communis soil contaminated with heavy metals. Chemosphere, 71: 834e842. Doi: https://doi.org/10.1016/j.chemosphere.2007.11.038
  • Rampadarath, S., Puchooa, D. (2016). In vitro antimicrobial and larvicidal properties of wild Ricinus communis L. in Mauritius. Asian Pac. J. Trop. Biomed., 6: 100-107. Doi: https://doi.org/10.1016/j.apjtb.2015.10.011
  • Rehn, L. S., Rodrigues, A. A., Vasconcelos-Filho, S. C., Rodrigues, D. A., de Freitas Moura, L. M., Costa, A. C., ... & Muller, C. (2020). Ricinus communis as a phytoremediator of soil mineral oil: morphoanatomical and physiological traits. Ecotoxicology, 29(2): 129-139. Doi: https://doi.org/10.1007/s10646-019-02147-6
  • Ribeiro, P.R., Castro, R.D., Fernandez, L.G., (2016). Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: a review. Ind. Crops Prod., 91: 358-376. Doi: https://doi.org/10.1016/j.indcrop.2016.07.010
  • Román-Figueroa, C., Cea, M., Paneque, M., & González, M. E. (2020). Oil content and fatty acid composition in castor bean naturalized accessions under Mediterranean conditions in Chile. Agronomy, 10(8): 1145. Doi: https://doi.org/10.3390/agronomy10081145
  • Roy, T., Sahani, S., & Sharma, Y. C. (2020). Green synthesis of biodiesel from Ricinus communis oil (castor seed oil) using potassium promoted lanthanum oxide catalyst: kinetic, thermodynamic and environmental studies. Fuel, 274: 117644. Doi: https://doi.org/10.1016/j.fuel.2020.117644
  • Sadeghi-Bakhtavari, A. R., & Hazrati, S. (2020). Growth, yield, and fatty acids as affected by water-deficit and foliar application of nitrogen, phosphorus, and sulfur in castor bean. Journal of Crop Improvement, 35(4): 453-468. Doi: https://doi.org/10.1080/15427528.2020.1824953
  • Salimon, J., Noor, D. A. M., Nazrizawati, A., & Noraishah, A. (2010). Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil. Sains Malaysiana, 39(5): 761–764.
  • Soni, N., Dhiman, R.C. (2017). Phytochemical, anti-oxidant, larvicidal, and antimicrobial activities of castor (Ricinus communis) synthesized silver nanoparticles. Chin. Herb. Med., 9: 289-294. Doi: https://doi.org/10.1016/S1674-6384(17)60106-0
  • Vasco-Leal, J. F., Cuellar-Nuñez, M. L., Luzardo-Ocampo, I., Ventura-Ramos, E., Loarca-Piña, G., & Rodriguez-García, M. E. (2020). Valorization of Mexican Ricinus communis L. leaves as a source of minerals and antioxidant compounds. Waste and Biomass Valorization, 12: 2071-2088. Doi: https://doi.org/10.1007/s12649-020-01164-5
  • Yeboah, A., Lu, J., Gu, S., Shi, Y., Amoanimaa-Dede, H., Agyenim-Boateng, K. G., & Yin, X. (2020). The utilization of Ricinus communis in the phytomanagement of heavy metal contaminated soils. Environmental Reviews, 28(4): 466-477. Doi: https://doi.org/10.1139/er-2020-0016
  • Yusuf, A. K., Mamza, P. A. P., Ahmed, A. S., & Agunwa, U. (2015). Extraction and characterization of castor seed oil from wild Ricinus communis Linn. International Journal of Science, Environment and Technology, 4(5): 1392-1404. Retrieved from https://www.ijset.net/journal/786.pdf
Year 2022, Volume: 6 Issue: 2, 263 - 270, 15.06.2022
https://doi.org/10.31015/jaefs.2022.2.9

Abstract

References

  • Adeniyi, O.T., Ahmed, A.S., Fasina, F.O., Mcgaw, L.J., Eloff, J.N., Naidoo, V. (2018). Pesticidal plants as a possible alternative to synthetic acaricides in tick control: a systematic review and meta-analysis. Ind. Crops Prod., 123: 779-806. Doi: https://doi.org/10.1016/j.indcrop.2018.06.075
  • Akpan, U.G., Jimoh, A. & Mohammed, A.D. (2006). Extraction, Characterization and Modification of Castor Seed Oil. Leonardo Journal of Sciences, 8: 43-52. Retrieved from http://ljs.academicdirect.org/
  • Alyari, H., Shekari F., and Shekari, F. (2000). Oil Seed Crops (Agronomy and Physiology), Amidi Press, 182P, Tabriz, Iran. (in Persian).
  • Awais, M., Musmar, S. E. A., Kabir, F., Batool, I., Rasheed, M. A., Jamil, F., & Tlili, I. (2020). Biodiesel Production from Melia azedarach and Ricinus communis Oil by Transesterification Process. Catalysts, 10(4) : 427. Doi: https://doi.org/10.3390/catal10040427
  • Carolina, A., Herliyana, E. N., & Sulastri, H. (2019). Antifungal activity of castor (Ricinus communis L.) leaves methanolic extract on Aspergillus niger. International Food Research Journal, 26(2) : 595-598. Retrieved from http://www.ifrj.upm.edu.my/
  • Carrino, L., Visconti, D., Fiorentino, N., & Fagnano, M. (2020). Biofuel Production with Castor Bean: A Win–Win Strategy for Marginal Land. Agronomy, 10(11): 1690. https://doi.org/10.3390/agronomy10111690
  • Chan, A. P., Crabtree, J., Zhao, Q., Lorenzi, H., Orvis, J., Puiu, D., & Rabinowicz, P. D. (2010). Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 28(9): 951-956. Doi: https://doi.org/10.1038/nbt.1674.
  • Conceicao, M.M., Candeia, R.A., Silva, F.C., Bezerra, A.F., Fernandes Jr., V.J. & Souza, A.G. (2007). Thermoanalytical characterization of castor oil biodiesel. Renewable and Sustainable Energy Reviews, 11: 964-975. Doi: https://doi.org/10.1016/j.rser.2005.10.001
  • Dave, G. (2002): Castor Oil and Its Chemistry. G.R.O’Shea Company, Itasca, Illinois, USA.
  • Demirtas, I., Pelvan, E., Ozdemir, I. S., Alasalvar, C., & Ertas, E. (2013). Lipid characteristics and phenolics of native grape seed oils grown in Turkey. European Journal of Lipid Science and Technology, 115(6): 641-647. Doi: https://doi.org/10.1002/ejlt.201200159
  • El-Naggar, M. H., Elgaml, A., Abdel Bar, F. M., & Badria, F. A. (2019). Antimicrobial and antiquorum-sensing activity of Ricinus communis extracts and ricinine derivatives. Natural Product Research, 33(11): 1556-1562. Doi: https://doi.org/10.1080/14786419.2017.1423306
  • Foglia, T.A., Jones, K.C. & Sonnet, P.E. 2000. Selectivity of lipases: isolation of fatty acids from castor, coriander, and meadowfoam oils. European Journal of Lipid Science Technology 102(10): 612-617. Doi: https://doi.org/10.1002/1438-9312(200010)102:10<612::AID-EJLT612>3.0.CO;2-U
  • Franke, H., Scholl, R., & Aigner, A. (2019). Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and “Papyrus Ebers” to modern perspectives and “poisonous plant of the year 2018”. Naunyn-Schmiedeberg's Arch. Pharmacol., 392(10): 1181-1208.Doi: https://doi.org/10.1007/s00210-019-01691-6
  • Gahukar, R.T., 2017. A review of castor-derived products used in crop and seed protection. Phytoparasitica, 45: 655-666. Doi: https://doi.org/10.1007/s12600-017-0625-7
  • Goytia-Jime´nez MA, Gallegos-Goytia CH, Nu´n˜ez-Colı´n CA (2011) Relationship among climatic variables with the morphology and oil content of castor oil plant (Ricinus communis L.) seeds from Chiapas. Rev. Chapingo Serie Ciencias Forestales Amb. 17, 41-48. Doi: https://doi.org/10.5154/r.rchscfa.2010.08.048
  • Gupta, S.S., Hilditch, T.P. & Riley, J.P. 1951. The Fatty Acids and Glycerides of Castor Oil. Journal of The Science of Food and Agriculture, 2(6): 245-251. Doi: https://doi.org/10.1002/jsfa.2740020603
  • Javanshir, A., Karimi, E., Maragheh, A. D., & Tabrizi, M. H. (2020). The antioxidant and anticancer potential of Ricinus communis L. essential oil nanoemulsions. Journal of Food Measurement and Characterization, 1-10. Doi: https://doi.org/10.1007/s11694-020-00385-5
  • Jena, J., & Gupta, A. K. (2012). Ricinus communis Linn: a phytopharmacological review. International Journal of Pharmacy and Pharmaceutical Sciences, 4(4): 25-29.
  • Kaur, R., & Bhaskar, T. (2020). Potential of castor plant (Ricinus communis) for production of biofuels, chemicals, and value-added products. In Waste biorefinery (pp. 269-310). Elsevier. Doi: https://doi.org/10.1016/j.jenvman.2012.10.023
  • Khalid, N., Masood, A., Noman, A., Aqeel, M., & Qasim, M. (2019). Study of the responses of two biomonitor plant species (Datura alba & Ricinus communis) to roadside air pollution. Chemosphere, 235: 832-841. Doi: https://doi.org/10.1016/j.chemosphere.2019.06.143
  • Lima, R.L.S., Severino, L.S., Sampaio, L.R., Valdinei Sofiatti, V.S., Gomes, J.A., Beltrao, N.E.M. (2011). Blends of castor meal and castor husks for optimized use as organic fertilizer. Ind. Crops Prod. 33: 364-368. Doi: https://doi.org/10.1016/j.indcrop.2010.11.008
  • Nangbes, J. G., Nvau, J. B., Buba, W. M., & Zukdimma, A. N. (2013). Extraction and Characterization of Castor (Ricinus Communis) Seed Oil. Retrieved from https://www.ijset.net/journal/786.pdf
  • Ogunniyi, D.S. 2006. Castor Oil: A vital industrial raw material. Bioresource Technology 97: 1086-1091. Doi: https://doi.org/10.1016/j.biortech.2005.03.028
  • Olivares, A. R., Carrillo-González, R., González-Chávez, M. D. C. A., & Hernández, R. M. S. (2013). Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. Journal of Environmental Management, 114: 316-323. Doi: https://doi.org/10.1016/j.jenvman.2012.10.023
  • Onemli, F. (2012). Impact of climate change on oil fatty acid composition of peanut (Arachis hypogaea L.) in three market classes. Chilean Journal of Agricultural Research, 72(4): 483. Doi: http://dx.doi.org/10.4067/S0718-58392012000400004
  • Osorio-González, C. S., Gómez-Falcon, N., Sandoval-Salas, F., Saini, R., Brar, S. K., & Ramírez, A. A. (2020). Production of Biodiesel from Castor Oil: A Review. Energies, 13(10): 2467. Doi: https://doi.org/10.3390/en13102467
  • Palanivel, T. M., Pracejus, B., & Victor, R. (2020). Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Environmental Science and Pollution Research, 1-11. Doi: https://doi.org/10.1007/s11356-020-08319-w
  • Perdomo, F. A., Acosta-Osorio, A. A., Herrera, G., Vasco-Leal, J. F., Mosquera-Artamonov, J. D., Millan-Malo, B., & Rodriguez-Garcia, M. E. (2013). Physicochemical characterization of seven Mexican Ricinus communis L. seeds & oil contents. Biomass and Bioenergy, 48: 17-24. Doi: https://doi.org/10.1016/j.biombioe.2012.10.020
  • Puthli, M.S., Rathod, V.K. & Pandit, A.B. (2006). Enzymatic Hidrolysis of Castor Oil: Process Intensification Studies. Biochemical Engineering Journal, 1-11. Doi: https://doi.org/10.1016/j.bej.2006.05.017
  • Rajkumar, M., Freitas, S.H., (2008). Influence of metal resistant-plant growthpromoting bacteria on the growth of Ricinus communis soil contaminated with heavy metals. Chemosphere, 71: 834e842. Doi: https://doi.org/10.1016/j.chemosphere.2007.11.038
  • Rampadarath, S., Puchooa, D. (2016). In vitro antimicrobial and larvicidal properties of wild Ricinus communis L. in Mauritius. Asian Pac. J. Trop. Biomed., 6: 100-107. Doi: https://doi.org/10.1016/j.apjtb.2015.10.011
  • Rehn, L. S., Rodrigues, A. A., Vasconcelos-Filho, S. C., Rodrigues, D. A., de Freitas Moura, L. M., Costa, A. C., ... & Muller, C. (2020). Ricinus communis as a phytoremediator of soil mineral oil: morphoanatomical and physiological traits. Ecotoxicology, 29(2): 129-139. Doi: https://doi.org/10.1007/s10646-019-02147-6
  • Ribeiro, P.R., Castro, R.D., Fernandez, L.G., (2016). Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: a review. Ind. Crops Prod., 91: 358-376. Doi: https://doi.org/10.1016/j.indcrop.2016.07.010
  • Román-Figueroa, C., Cea, M., Paneque, M., & González, M. E. (2020). Oil content and fatty acid composition in castor bean naturalized accessions under Mediterranean conditions in Chile. Agronomy, 10(8): 1145. Doi: https://doi.org/10.3390/agronomy10081145
  • Roy, T., Sahani, S., & Sharma, Y. C. (2020). Green synthesis of biodiesel from Ricinus communis oil (castor seed oil) using potassium promoted lanthanum oxide catalyst: kinetic, thermodynamic and environmental studies. Fuel, 274: 117644. Doi: https://doi.org/10.1016/j.fuel.2020.117644
  • Sadeghi-Bakhtavari, A. R., & Hazrati, S. (2020). Growth, yield, and fatty acids as affected by water-deficit and foliar application of nitrogen, phosphorus, and sulfur in castor bean. Journal of Crop Improvement, 35(4): 453-468. Doi: https://doi.org/10.1080/15427528.2020.1824953
  • Salimon, J., Noor, D. A. M., Nazrizawati, A., & Noraishah, A. (2010). Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil. Sains Malaysiana, 39(5): 761–764.
  • Soni, N., Dhiman, R.C. (2017). Phytochemical, anti-oxidant, larvicidal, and antimicrobial activities of castor (Ricinus communis) synthesized silver nanoparticles. Chin. Herb. Med., 9: 289-294. Doi: https://doi.org/10.1016/S1674-6384(17)60106-0
  • Vasco-Leal, J. F., Cuellar-Nuñez, M. L., Luzardo-Ocampo, I., Ventura-Ramos, E., Loarca-Piña, G., & Rodriguez-García, M. E. (2020). Valorization of Mexican Ricinus communis L. leaves as a source of minerals and antioxidant compounds. Waste and Biomass Valorization, 12: 2071-2088. Doi: https://doi.org/10.1007/s12649-020-01164-5
  • Yeboah, A., Lu, J., Gu, S., Shi, Y., Amoanimaa-Dede, H., Agyenim-Boateng, K. G., & Yin, X. (2020). The utilization of Ricinus communis in the phytomanagement of heavy metal contaminated soils. Environmental Reviews, 28(4): 466-477. Doi: https://doi.org/10.1139/er-2020-0016
  • Yusuf, A. K., Mamza, P. A. P., Ahmed, A. S., & Agunwa, U. (2015). Extraction and characterization of castor seed oil from wild Ricinus communis Linn. International Journal of Science, Environment and Technology, 4(5): 1392-1404. Retrieved from https://www.ijset.net/journal/786.pdf
There are 41 citations in total.

Details

Primary Language English
Subjects Botany
Journal Section Research Articles
Authors

Zeynep Ergun 0000-0002-9868-9488

Mozhgan Zarıfıkhosroshahı 0000-0001-5491-1430

Publication Date June 15, 2022
Submission Date May 10, 2022
Acceptance Date June 20, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Ergun, Z., & Zarıfıkhosroshahı, M. (2022). The effect of different climatic zones on fatty acid profile of Ricinus communis seed oil. International Journal of Agriculture Environment and Food Sciences, 6(2), 263-270. https://doi.org/10.31015/jaefs.2022.2.9


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27