Research Article
PDF EndNote BibTex RIS Cite

Year 2022, Volume 6, Issue 3, 378 - 388, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.6

Abstract

References

  • Akdoğan, A. ve Güleç, S. (2007) Sürdürülebilir katı atık yönetimi ve belediyelerde yöneticilerin katı atık yönetimiyle ilgili tutum ve düşüncelerinin analizine yönelik bir araştırma, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Ankara, vol. 25, no. 1, pp. 39-69. (in Turkish).
  • Andriani, D., Atmaja, T.D. (2019) The potentials of landfill gas production: a review on municipal solid waste management in Indonesia, Journal of Material Cycles and Waste Management, vol.21, pp. 1572-1586, Do: 10.1007/s10163-019-00895-5
  • Anonim (2020). https://webdosya.csb.gov.tr/, Erişim Tarihi 9.09.2020, Erzurum Çevre ve Şehircilik İl Müdürlüğü İl Sıfır Atık Yönetı̇m Sı̇stemı̇ Planı. (in Turkish).
  • Atmaca, K. (2015) Samsun katı atık düzenli depolama sahası deponi gazı enerji verimliliğinin incelenmesi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Samsun. (in Turkish).
  • Bilgili, M.S. (2002) Katı atık düzenli depo sahalarında depo gazı oluşumunu etkileyen faktörlerin belirlenmesi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul. (in Turkish). Brito, R. C., Barros, R. M., et al. (2021) Municipal solid waste management and economic feasibility for electricity generation from landfill gas and anaerobic reactors in a Brazilian state, Environmental Technology & Innovation, vol.22, pp. 101453, Doi: https://doi.org/10.1016/j.eti.2021.101453
  • ÇYGM (2017), National Waste Management and Action Plan 2023; Ministry of Environment and Urbanization. Retrieved from https://cygm.csb.gov.tr ,Access Date 12.08.2021.
  • Dai, W., Taghavi, M. (2021) Waste and electricity generation; economic and greenhouse gas assessments with comparison different districts of Tehran and Beijing, Sustainable energy technologies and assessments, vol.47, pp. 101345, Doi: https://doi.org/10.1016/j.seta.2021.101345
  • EC (2021). Waste framework directive. Retrieved from https://ec.europa.eu/environment/topics/waste-and-recycling/waste-framework-directive_en ,Access Date 11.05.2021.
  • EU (2021). Waste prevention and management. Retrieved from https://ec.europa.eu/environment/green-growth/waste-prevention-and-management/index_en.htm, , Access Date 11.05.2021.
  • Fallahizadeh. S., Rahmatinia. M., Mohammadi. Z., Vaezzadeh. M., Tajamiri. A., Soleimani. H. (2019) Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran, MethodsX, vol.6, pp.391-398 , Doi: https://doi.org/10.1016/j.mex.2019.02.013
  • Hosseini et al. (2018) Estimation of landfill gas generation in a municipal solid waste disposal site by LandGEM mathematical model, Global J. Environ. Sci. Manage, vol.4, no.4, pp. 493-506, Doi: https://dx.doi.org/10.22034/gjesm.2018.04.009
  • Huang, D., Du, Y., Xu, Q., Ko, J. H. (2022) Quantification and control of gaseous emissions from solid waste landfill surfaces, Journal of Environmental Management, vol. 302, pp. 114001, Doi: https://doi.org/10.3390/su13031462
  • Hunce, S.Y., Akgul, D., Demir, G., Mertoglu, B. (2012) Solidification/stabilization of landfill leachate concentrate using different aggregate materials, Waste Management, vol.32, no.7, pp. 1394–1400, Doi: https://doi.org/10.1016/j.wasman.2012.03.010
  • Karayılan, S. (2018) Modelling and Assessment of Landfill Gas Generation at Afyonkarahisar Landfill Site, Middle East Technical University, The grauate scholl of natural and applied sciences degree of Master of Sciences, Ankara.
  • Lattanzi et al. (2019) Modeling of biogas generation by applying CDM methodology for greenhouse gas emission reduction: case study of the mtr santa maria madalena landfill, RJ, Brazil, Systems & Management, vol. 14, no.4, pp.483-491, Doi: https://doi.org/10.20985/1980-5160.2019.v14n4.1596
  • Mokhtari M, Ebrahimi A, Rezacinia S. (2020) Prediction of greenhouse gas emissions in municipal solid waste landfills using LandGEM and IPCC Methods in Yazd, Iran, J Environ Health Sustain Dev., vol. 5, no. 4, pp.1145-54, Doi: https://doi.org/10.18502/jehsd.v5i4.4964
  • Osra, F.A., Ozcan, H.K., Alzahrani, J.S., Alsoufi, (2021) M.S. Municipal solid waste characterization and landfill gas generation in Kakia, Makkah, Sustainability, vol.13, pp. 1462, Doi: https://doi.org/10.3390/su13031462
  • Öztürk, M. (2018) Katı Atık Depolama Alanında Depo Gazı Oluşumu, Çevre ve Şehircilik Bakanlığı, Ankara. (in Turkish).
  • Rahman, M.M., Rahman, S.M., Rahman, M.S., Hasan, M.A., Shoaib, S.A. Rushd, S. (2021) Greenhouse gas emissions from solid waste management in Saudi Arabia- Analysis of growth dynamics and mitigation opportunities, Appl. Sci, vol.11, pp. 1737, Doi: https://doi.org/10.3390/app11041737
  • Şentürk. İ., Yıldırım, B. (2020) A study on estimating of the landfill gas potential from solid waste storage area in Sivas, Techno-Science, Sivas, vol. 3, no.2, pp. 63-76.
  • TÜİK (2018) İstatistiklerle Çevre. Retrieved from https://data.tuik.gov.tr , Access Date 11.08.2021, (in Turkish).
  • USEPA (2011) Municipal Solid Waste in the United States. Retrieved from https://archive.epa.gov/epawaste/nonhaz/municipal/web/pdf/mswcharacterization_fnl_060713_2_rpt.pdf , Access Date 11.06.2021.
  • USEPA (2005) Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. Retrieved from https://www3.epa.gov , Access Date 5.08.2021.
  • Yıldırım, B. (2020) Depo gazından enerji üretimi ve bir örnek uygulama, Sivas Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Sivas. (in Turkish).

Modelling and assessment of landfill gas generation at Erzurum municipal landfill site by LandGEM

Year 2022, Volume 6, Issue 3, 378 - 388, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.6

Abstract

Landfill areas have always been a common application for municipal solid waste management. However, land use problems, environmental pollution and increasing recycling implements have limited the amount of solid waste which is stored in the landfill areas. Despite all disadvantages, it is still considered a preferred disposal method fort he solid waste, especially when methane gas released from the areas is used to obtain electrical energy. In this context, the aim of this study is to estimate the landfill gas amounts originating from the Erzurum Solid Waste Landfill area using the LandGEM 3.02 version developed by EPA and to compare it with the methane gas concentrations measured on-site for the last three years. Total landfill gas, methane, carbon dioxide, and NMOC amounts were estimated with the model by choosing the basic parameters of the LandGEM (k and Lo values) according to the Clean Air Act and AP-42 inventory suggested by the EPA. The amount of the same gases was also predicted by manually calculated the k and Lo values (User Specified) with the specific data of the field. Finally, the amount of landfill gases obtained by using all three inventories (the Clean Air Act, AP-42 and User Specified) was compared with the methane concentrations measured in the field in order to confirm the model results. First result is that the methane gas concentrations predicted by the model were nearly close to the real methane measurements on site. Secondly, the operating period determined as 20 years for Erzurum landfill area when it was put into operation in 2008, while it was estimated as 23 years according to the LandGEM model results. Erzurum Solid Waste Landfill area has already been designed for power generation and the energy is produced at present. Therefore, the model can easily be used and verified for future improvement of the landfill area and the prediction of the amount of the energy obtained from the wastes.

References

  • Akdoğan, A. ve Güleç, S. (2007) Sürdürülebilir katı atık yönetimi ve belediyelerde yöneticilerin katı atık yönetimiyle ilgili tutum ve düşüncelerinin analizine yönelik bir araştırma, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Ankara, vol. 25, no. 1, pp. 39-69. (in Turkish).
  • Andriani, D., Atmaja, T.D. (2019) The potentials of landfill gas production: a review on municipal solid waste management in Indonesia, Journal of Material Cycles and Waste Management, vol.21, pp. 1572-1586, Do: 10.1007/s10163-019-00895-5
  • Anonim (2020). https://webdosya.csb.gov.tr/, Erişim Tarihi 9.09.2020, Erzurum Çevre ve Şehircilik İl Müdürlüğü İl Sıfır Atık Yönetı̇m Sı̇stemı̇ Planı. (in Turkish).
  • Atmaca, K. (2015) Samsun katı atık düzenli depolama sahası deponi gazı enerji verimliliğinin incelenmesi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Samsun. (in Turkish).
  • Bilgili, M.S. (2002) Katı atık düzenli depo sahalarında depo gazı oluşumunu etkileyen faktörlerin belirlenmesi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul. (in Turkish). Brito, R. C., Barros, R. M., et al. (2021) Municipal solid waste management and economic feasibility for electricity generation from landfill gas and anaerobic reactors in a Brazilian state, Environmental Technology & Innovation, vol.22, pp. 101453, Doi: https://doi.org/10.1016/j.eti.2021.101453
  • ÇYGM (2017), National Waste Management and Action Plan 2023; Ministry of Environment and Urbanization. Retrieved from https://cygm.csb.gov.tr ,Access Date 12.08.2021.
  • Dai, W., Taghavi, M. (2021) Waste and electricity generation; economic and greenhouse gas assessments with comparison different districts of Tehran and Beijing, Sustainable energy technologies and assessments, vol.47, pp. 101345, Doi: https://doi.org/10.1016/j.seta.2021.101345
  • EC (2021). Waste framework directive. Retrieved from https://ec.europa.eu/environment/topics/waste-and-recycling/waste-framework-directive_en ,Access Date 11.05.2021.
  • EU (2021). Waste prevention and management. Retrieved from https://ec.europa.eu/environment/green-growth/waste-prevention-and-management/index_en.htm, , Access Date 11.05.2021.
  • Fallahizadeh. S., Rahmatinia. M., Mohammadi. Z., Vaezzadeh. M., Tajamiri. A., Soleimani. H. (2019) Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran, MethodsX, vol.6, pp.391-398 , Doi: https://doi.org/10.1016/j.mex.2019.02.013
  • Hosseini et al. (2018) Estimation of landfill gas generation in a municipal solid waste disposal site by LandGEM mathematical model, Global J. Environ. Sci. Manage, vol.4, no.4, pp. 493-506, Doi: https://dx.doi.org/10.22034/gjesm.2018.04.009
  • Huang, D., Du, Y., Xu, Q., Ko, J. H. (2022) Quantification and control of gaseous emissions from solid waste landfill surfaces, Journal of Environmental Management, vol. 302, pp. 114001, Doi: https://doi.org/10.3390/su13031462
  • Hunce, S.Y., Akgul, D., Demir, G., Mertoglu, B. (2012) Solidification/stabilization of landfill leachate concentrate using different aggregate materials, Waste Management, vol.32, no.7, pp. 1394–1400, Doi: https://doi.org/10.1016/j.wasman.2012.03.010
  • Karayılan, S. (2018) Modelling and Assessment of Landfill Gas Generation at Afyonkarahisar Landfill Site, Middle East Technical University, The grauate scholl of natural and applied sciences degree of Master of Sciences, Ankara.
  • Lattanzi et al. (2019) Modeling of biogas generation by applying CDM methodology for greenhouse gas emission reduction: case study of the mtr santa maria madalena landfill, RJ, Brazil, Systems & Management, vol. 14, no.4, pp.483-491, Doi: https://doi.org/10.20985/1980-5160.2019.v14n4.1596
  • Mokhtari M, Ebrahimi A, Rezacinia S. (2020) Prediction of greenhouse gas emissions in municipal solid waste landfills using LandGEM and IPCC Methods in Yazd, Iran, J Environ Health Sustain Dev., vol. 5, no. 4, pp.1145-54, Doi: https://doi.org/10.18502/jehsd.v5i4.4964
  • Osra, F.A., Ozcan, H.K., Alzahrani, J.S., Alsoufi, (2021) M.S. Municipal solid waste characterization and landfill gas generation in Kakia, Makkah, Sustainability, vol.13, pp. 1462, Doi: https://doi.org/10.3390/su13031462
  • Öztürk, M. (2018) Katı Atık Depolama Alanında Depo Gazı Oluşumu, Çevre ve Şehircilik Bakanlığı, Ankara. (in Turkish).
  • Rahman, M.M., Rahman, S.M., Rahman, M.S., Hasan, M.A., Shoaib, S.A. Rushd, S. (2021) Greenhouse gas emissions from solid waste management in Saudi Arabia- Analysis of growth dynamics and mitigation opportunities, Appl. Sci, vol.11, pp. 1737, Doi: https://doi.org/10.3390/app11041737
  • Şentürk. İ., Yıldırım, B. (2020) A study on estimating of the landfill gas potential from solid waste storage area in Sivas, Techno-Science, Sivas, vol. 3, no.2, pp. 63-76.
  • TÜİK (2018) İstatistiklerle Çevre. Retrieved from https://data.tuik.gov.tr , Access Date 11.08.2021, (in Turkish).
  • USEPA (2011) Municipal Solid Waste in the United States. Retrieved from https://archive.epa.gov/epawaste/nonhaz/municipal/web/pdf/mswcharacterization_fnl_060713_2_rpt.pdf , Access Date 11.06.2021.
  • USEPA (2005) Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. Retrieved from https://www3.epa.gov , Access Date 5.08.2021.
  • Yıldırım, B. (2020) Depo gazından enerji üretimi ve bir örnek uygulama, Sivas Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Sivas. (in Turkish).

Details

Primary Language English
Subjects Environmental Engineering
Published Date September 2022
Journal Section Research Articles
Authors

Zeynep ARSLAN> (Primary Author)
Erzurum Büyükşehir Belediyesi
0000-0002-4328-0853
Türkiye


Zeynep EREN>
Ataturk University, Engimeering Faculty, Environmental Engineering Department
0000-0003-1633-2547
Türkiye

Publication Date September 23, 2022
Application Date April 29, 2022
Acceptance Date July 22, 2022
Published in Issue Year 2022, Volume 6, Issue 3

Cite

APA Arslan, Z. & Eren, Z. (2022). Modelling and assessment of landfill gas generation at Erzurum municipal landfill site by LandGEM . International Journal of Agriculture Environment and Food Sciences , 6 (3) , 378-388 . DOI: 10.31015/jaefs.2022.3.6


19514

19515

19516