Research Article
BibTex RIS Cite

Bioactive compounds of hawthorn powders produced by convectional and lyophilized foam mat drying method

Year 2023, Volume: 7 Issue: 1, 197 - 205, 27.03.2023
https://doi.org/10.31015/jaefs.2023.1.24

Abstract

Fruit powders produced with drying technologies have a wide range of uses in the food industry. The fruit powders have the potential to be used as a food supplement or natural colorant thanks to their health-promoting functional properties. Hawthorn is one of the fruits that has attracted attention in recent years with its positive effects on health. In this study, hawthorn powder was produced by convective (C) and lyophilized (L) foam mat drying methods. In preliminary experiments, the best foam properties were obtained with 1% egg white powder. The foams were dried until their moisture content decreased to 4±0.5%. Three different temperatures (60-65-70°C) were used in convective foam mat drying. Total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (ABTS and DPPH) and phenolic composition were determined in the powders. The convective foam mat dried at 60 °C (C-60) and lyophilized foam mat dried (L) samples exhibited higher TPC and ABTS values than other samples. In powder and fresh samples, gallic acid, protocatechuic acid, chlorogenic acid, epicatechin, and catechin were detected with the liquid chromatographic method. epicatechin and chlorogenic acid were the most abundant phenolic compounds in the samples. In the C-70 sample, epicatechin and protocatechuic acid were significantly lower (p<0.05). According to the results of the study, it was determined that the samples that applied the foam mat drying technique at 60 °C showed similar results with lyophilized foam mat drying. The foam mat drying method at 60 °C can be recommended as a preferred method in hawthorn powder production due to the reduction in drying time, low investment and operating costs.

Supporting Institution

Suleyman Demirel University Scientific Research Fund

Project Number

FAB-2021-8252

Thanks

The author is thankful to Sevval BOSTANCI for their assistance at the laboratory.

References

  • Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2019). Food Powders: Physical Properties, Processing and Functionality. Kluwer Academic/Plenum Publishers.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Cemeroğlu, B. (2003). Meyve ve Sebze İşleme Teknolojisi. Nobel Kitap.
  • Chang, Q., Zuo, Z., Harrison, F., Sing, M., & Chow, S. (2002). Hawthorn. Herbal Medicine, 42, 605–612.
  • Choi, Y., Lee, S. M., Chun, J., Lee, H. B., & Lee, J. (2006). Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chemistry, 99(2), 381–387. https://doi.org/10.1016/j.foodchem.2005.08.004
  • Coklar, H., & Akbulut, M. (2016). The Change in Antioxidant Activity , Total Phenolic Content and Phenolic Profile of Hawthorn ( Crataegus orientalis ... Fruit Science, 3(2)(November 2016), 30–37.
  • Cuevas-Bernardino, J. C., Lobato-Calleros, C., Román-Guerrero, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2016). Physicochemical characterisation of hawthorn pectins and their performing in stabilising oil-in-water emulsions. Reactive and Functional Polymers, 103, 63–71. https://doi.org/10.1016/j.reactfunctpolym.2016.03.024
  • Dahmer, S., & Scott, E. (2010). Health effects of hawthorn. American Family Physician, 81(4), 465–468. http://dx.doi.org/
  • Darniadi, S. (2017). Optimisation of foam-mat freeze-drying conditions for blueberry powder and evaluation of powder properties. August, 1–202. https://etheses.whiterose.ac.uk/18476/
  • Darniadi, S., Ho, P., & Murray, B. S. (2018). Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties. Journal of the Science of Food and Agriculture, 98(5), 2002–2010. https://doi.org/10.1002/jsfa.8685
  • Dev, S. R. S., & Raghavan, V. G. S. (2012). Advancements in Drying Techniques for Food, Fiber, and Fuel. Drying Technology, 30(11–12), 1147–1159. https://doi.org/10.1080/07373937.2012.692747
  • Dewanto, V., Xianzhong, W., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010–3014. https://doi.org/10.1021/jf0115589
  • González-Jiménez, F. E., Salazar-Montoya, J. A., Calva-Calva, G., & Ramos-Ramírez, E. G. (2018). Phytochemical Characterization, in Vitro Antioxidant Activity, and Quantitative Analysis by Micellar Electrokinetic Chromatography of Hawthorn (Crataegus pubescens) Fruit. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/2154893
  • He, G., Sui, J., Du, J., & Lin, J. (2013). Characteristics and antioxidant capacities of five hawthorn wines fermented by different wine yeasts. Journal of the Institute of Brewing, 119(4), 321–327. https://doi.org/10.1002/jib.101
  • Heras-Ramírez, M. E., Quintero-Ramos, A., Camacho-Dávila, A. A., Barnard, J., Talamás-Abbud, R., Torres-Muñoz, J. V., & Salas-Muñoz, E. (2012). Effect of Blanching and Drying Temperature on Polyphenolic Compound Stability and Antioxidant Capacity of Apple Pomace. Food and Bioprocess Technology, 5(6), 2201–2210. https://doi.org/10.1007/s11947-011-0583-x
  • Jakubczyka, E., Gondeka, E., Tamborb, K., Jakubczyk, E., Gondek, E., & Tambor, K. (2011). Characteristics of selected functional properties of apple powders obtained by the foam-mat drying method. Food Process Engineering in a Changing World, January 2015, 1–6.
  • Jiang, H., Zhang, M., & Adhikari, B. (2013). Fruit and vegetable powders. Handbook of Food Powders: Processes and Properties, 532–552. https://doi.org/10.1533/9780857098672.3.532
  • Kisioglu, B., & Nergiz-Unal, R. (2018). The powerful story against cardiovascular diseases: Dietary factors. Food Reviews International, 34(8), 713–745. https://doi.org/10.1080/87559129.2017.1410172
  • Koç, M., & Ertekin, F. K. (2016). Türk Tarım -Gıda Bilim ve Teknoloji Dergisi Şeker İçeriği Yüksek Gıdaların Püskürtülerek Kurutulması: Ürün Kazanımı ve Toz Ürün Özelliklerinin Geliştirilmesi. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 4(5), 336–344. www.agrifoodscience.com
  • Li, M., Chen, X., Deng, J., Ouyang, D., Wang, D., Liang, Y., Chen, Y., & Sun, Y. (2020). Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chemistry, 332(483), 127429. https://doi.org/10.1016/j.foodchem.2020.127429
  • Lin, J. Y., & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1), 140–147. https://doi.org/10.1016/j.foodchem.2006.01.014
  • Liu, H., Liu, J., Lv, Z., Yang, W., Zhang, C., Chen, D., & Jiao, Z. (2019). Effect of dehydration techniques on bioactive compounds in hawthorn slices and their correlations with antioxidant properties. Journal of Food Science and Technology, 56(5), 2446–2457. https://doi.org/10.1007/s13197-019-03720-x
  • Muthukumaran, A., Ratti, C., & Raghavan, V. (2008). Foam-mat freeze drying of egg white-mathematical modeling Part II: Freeze drying and modeling. Drying Technology, 26(4), 513–518. https://doi.org/10.1080/07373930801929615
  • Nazhand, A., Lucarini, M., Durazzo, A., Zaccardelli, M., Cristarella, S., Souto, S. B., Silva, A. M., Severino, P., Souto, E. B., & Santini, A. (2020). Hawthorn (Crataegus spp.): An updated overview on its beneficial properties. Forests, 11(5), 1–21. https://doi.org/10.3390/F11050564
  • Nijhuis, H. H., Torringa, H. M., Muresan, S., Yuksel, D., Leguijt, C., & Kloek, W. (1998). Approaches to improving the quality of dried fruit and vegetables. Trends in Food Science and Technology, 9(1), 13–20. https://doi.org/10.1016/S0924-2244(97)00007-1
  • Perera, C. O. (2005). Selected quality attributes of dried foods. Drying Technology, 23(4), 717–730. https://doi.org/10.1081/DRT-200054180
  • Qadri, O. S., Srivastava, A. K., & Yousuf, B. (2020). Trends in foam mat drying of foods: Special emphasis on hybrid foam mat drying technology. Critical Reviews in Food Science and Nutrition, 60(10), 1667–1676. https://doi.org/10.1080/10408398.2019.1588221
  • Raharitsifa, N., & Ratti, C. (2010). Foam-mat freeze-drying of apple juice part 1: Experimental data and ann simulations. Journal of Food Process Engineering, 33(SUPPL. 1), 268–283. https://doi.org/10.1111/j.1745-4530.2009.00400.x
  • Ratti, C. (2013). Freeze drying for food powder production. In Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672.1.57
  • Re, R., Nicoletta, P., Anna, P., Ananth, P., Min, Y., & Catherine, R.-E. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26((9-10)), 1231–1237.
  • Reis, F. R., de Moraes, A. C. S., & Masson, M. L. (2021). Impact of Foam-Mat Drying on Plant-Based Foods Bioactive Compounds: a Review. Plant Foods for Human Nutrition, 76(2), 153–160. https://doi.org/10.1007/s11130-021-00899-3
  • Rigelsky, J. M., & Sweet, B. V. (2002). Hawthorn: Pharmacology and therapeutic uses. American Journal of Health-System Pharmacy, 59(5), 417–422. https://doi.org/10.1093/ajhp/59.5.417
  • Sangamithra, A., Venkatachalam, S., John, S. G., & Kuppuswamy, K. (2015). Foam Mat Drying of Food Materials: A Review. Journal of Food Processing and Preservation, 39(6), 3165–3174. https://doi.org/10.1111/jfpp.12421
  • Seerangurayar, T., Manickavasagan, A., Al-Ismaili, A. M., & Al-Mulla, Y. A. (2018). Effect of carrier agents on physicochemical properties of foam-mat freeze-dried date powder. Drying Technology, 36(11), 1292–1303. https://doi.org/10.1080/07373937.2017.1400557
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://www.sciencedirect.com/science/article/abs/pii/S0076687999990171
  • Suvarnakuta, P., Chaweerungrat, C., & Devahastin, S. (2011). Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chemistry, 125(1), 240–247. https://doi.org/10.1016/j.foodchem.2010.09.015
  • Türker, İ., Koç, B., & İşleroğlu, H. (2018). Püskürtmeli-Dondurarak Kurutma İşleminin Maltodekstrinin Fiziksel Özellikleri Üzerine Etkisi. Gıda, 43, 197–210. https://doi.org/10.153237/gida.GD17101
  • Volf, I., Ignat, I., Neamtu, M., & Popa, V. I. (2014). Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chemical Papers, 68(1), 121–129. https://doi.org/10.2478/s11696-013-0417-6
  • Zhang, L. L., Zhang, L. F., & Xu, J. G. (2020). Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.). Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-65802-7
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
Year 2023, Volume: 7 Issue: 1, 197 - 205, 27.03.2023
https://doi.org/10.31015/jaefs.2023.1.24

Abstract

Project Number

FAB-2021-8252

References

  • Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2019). Food Powders: Physical Properties, Processing and Functionality. Kluwer Academic/Plenum Publishers.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Cemeroğlu, B. (2003). Meyve ve Sebze İşleme Teknolojisi. Nobel Kitap.
  • Chang, Q., Zuo, Z., Harrison, F., Sing, M., & Chow, S. (2002). Hawthorn. Herbal Medicine, 42, 605–612.
  • Choi, Y., Lee, S. M., Chun, J., Lee, H. B., & Lee, J. (2006). Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chemistry, 99(2), 381–387. https://doi.org/10.1016/j.foodchem.2005.08.004
  • Coklar, H., & Akbulut, M. (2016). The Change in Antioxidant Activity , Total Phenolic Content and Phenolic Profile of Hawthorn ( Crataegus orientalis ... Fruit Science, 3(2)(November 2016), 30–37.
  • Cuevas-Bernardino, J. C., Lobato-Calleros, C., Román-Guerrero, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2016). Physicochemical characterisation of hawthorn pectins and their performing in stabilising oil-in-water emulsions. Reactive and Functional Polymers, 103, 63–71. https://doi.org/10.1016/j.reactfunctpolym.2016.03.024
  • Dahmer, S., & Scott, E. (2010). Health effects of hawthorn. American Family Physician, 81(4), 465–468. http://dx.doi.org/
  • Darniadi, S. (2017). Optimisation of foam-mat freeze-drying conditions for blueberry powder and evaluation of powder properties. August, 1–202. https://etheses.whiterose.ac.uk/18476/
  • Darniadi, S., Ho, P., & Murray, B. S. (2018). Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties. Journal of the Science of Food and Agriculture, 98(5), 2002–2010. https://doi.org/10.1002/jsfa.8685
  • Dev, S. R. S., & Raghavan, V. G. S. (2012). Advancements in Drying Techniques for Food, Fiber, and Fuel. Drying Technology, 30(11–12), 1147–1159. https://doi.org/10.1080/07373937.2012.692747
  • Dewanto, V., Xianzhong, W., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010–3014. https://doi.org/10.1021/jf0115589
  • González-Jiménez, F. E., Salazar-Montoya, J. A., Calva-Calva, G., & Ramos-Ramírez, E. G. (2018). Phytochemical Characterization, in Vitro Antioxidant Activity, and Quantitative Analysis by Micellar Electrokinetic Chromatography of Hawthorn (Crataegus pubescens) Fruit. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/2154893
  • He, G., Sui, J., Du, J., & Lin, J. (2013). Characteristics and antioxidant capacities of five hawthorn wines fermented by different wine yeasts. Journal of the Institute of Brewing, 119(4), 321–327. https://doi.org/10.1002/jib.101
  • Heras-Ramírez, M. E., Quintero-Ramos, A., Camacho-Dávila, A. A., Barnard, J., Talamás-Abbud, R., Torres-Muñoz, J. V., & Salas-Muñoz, E. (2012). Effect of Blanching and Drying Temperature on Polyphenolic Compound Stability and Antioxidant Capacity of Apple Pomace. Food and Bioprocess Technology, 5(6), 2201–2210. https://doi.org/10.1007/s11947-011-0583-x
  • Jakubczyka, E., Gondeka, E., Tamborb, K., Jakubczyk, E., Gondek, E., & Tambor, K. (2011). Characteristics of selected functional properties of apple powders obtained by the foam-mat drying method. Food Process Engineering in a Changing World, January 2015, 1–6.
  • Jiang, H., Zhang, M., & Adhikari, B. (2013). Fruit and vegetable powders. Handbook of Food Powders: Processes and Properties, 532–552. https://doi.org/10.1533/9780857098672.3.532
  • Kisioglu, B., & Nergiz-Unal, R. (2018). The powerful story against cardiovascular diseases: Dietary factors. Food Reviews International, 34(8), 713–745. https://doi.org/10.1080/87559129.2017.1410172
  • Koç, M., & Ertekin, F. K. (2016). Türk Tarım -Gıda Bilim ve Teknoloji Dergisi Şeker İçeriği Yüksek Gıdaların Püskürtülerek Kurutulması: Ürün Kazanımı ve Toz Ürün Özelliklerinin Geliştirilmesi. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 4(5), 336–344. www.agrifoodscience.com
  • Li, M., Chen, X., Deng, J., Ouyang, D., Wang, D., Liang, Y., Chen, Y., & Sun, Y. (2020). Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chemistry, 332(483), 127429. https://doi.org/10.1016/j.foodchem.2020.127429
  • Lin, J. Y., & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1), 140–147. https://doi.org/10.1016/j.foodchem.2006.01.014
  • Liu, H., Liu, J., Lv, Z., Yang, W., Zhang, C., Chen, D., & Jiao, Z. (2019). Effect of dehydration techniques on bioactive compounds in hawthorn slices and their correlations with antioxidant properties. Journal of Food Science and Technology, 56(5), 2446–2457. https://doi.org/10.1007/s13197-019-03720-x
  • Muthukumaran, A., Ratti, C., & Raghavan, V. (2008). Foam-mat freeze drying of egg white-mathematical modeling Part II: Freeze drying and modeling. Drying Technology, 26(4), 513–518. https://doi.org/10.1080/07373930801929615
  • Nazhand, A., Lucarini, M., Durazzo, A., Zaccardelli, M., Cristarella, S., Souto, S. B., Silva, A. M., Severino, P., Souto, E. B., & Santini, A. (2020). Hawthorn (Crataegus spp.): An updated overview on its beneficial properties. Forests, 11(5), 1–21. https://doi.org/10.3390/F11050564
  • Nijhuis, H. H., Torringa, H. M., Muresan, S., Yuksel, D., Leguijt, C., & Kloek, W. (1998). Approaches to improving the quality of dried fruit and vegetables. Trends in Food Science and Technology, 9(1), 13–20. https://doi.org/10.1016/S0924-2244(97)00007-1
  • Perera, C. O. (2005). Selected quality attributes of dried foods. Drying Technology, 23(4), 717–730. https://doi.org/10.1081/DRT-200054180
  • Qadri, O. S., Srivastava, A. K., & Yousuf, B. (2020). Trends in foam mat drying of foods: Special emphasis on hybrid foam mat drying technology. Critical Reviews in Food Science and Nutrition, 60(10), 1667–1676. https://doi.org/10.1080/10408398.2019.1588221
  • Raharitsifa, N., & Ratti, C. (2010). Foam-mat freeze-drying of apple juice part 1: Experimental data and ann simulations. Journal of Food Process Engineering, 33(SUPPL. 1), 268–283. https://doi.org/10.1111/j.1745-4530.2009.00400.x
  • Ratti, C. (2013). Freeze drying for food powder production. In Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672.1.57
  • Re, R., Nicoletta, P., Anna, P., Ananth, P., Min, Y., & Catherine, R.-E. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26((9-10)), 1231–1237.
  • Reis, F. R., de Moraes, A. C. S., & Masson, M. L. (2021). Impact of Foam-Mat Drying on Plant-Based Foods Bioactive Compounds: a Review. Plant Foods for Human Nutrition, 76(2), 153–160. https://doi.org/10.1007/s11130-021-00899-3
  • Rigelsky, J. M., & Sweet, B. V. (2002). Hawthorn: Pharmacology and therapeutic uses. American Journal of Health-System Pharmacy, 59(5), 417–422. https://doi.org/10.1093/ajhp/59.5.417
  • Sangamithra, A., Venkatachalam, S., John, S. G., & Kuppuswamy, K. (2015). Foam Mat Drying of Food Materials: A Review. Journal of Food Processing and Preservation, 39(6), 3165–3174. https://doi.org/10.1111/jfpp.12421
  • Seerangurayar, T., Manickavasagan, A., Al-Ismaili, A. M., & Al-Mulla, Y. A. (2018). Effect of carrier agents on physicochemical properties of foam-mat freeze-dried date powder. Drying Technology, 36(11), 1292–1303. https://doi.org/10.1080/07373937.2017.1400557
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://www.sciencedirect.com/science/article/abs/pii/S0076687999990171
  • Suvarnakuta, P., Chaweerungrat, C., & Devahastin, S. (2011). Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chemistry, 125(1), 240–247. https://doi.org/10.1016/j.foodchem.2010.09.015
  • Türker, İ., Koç, B., & İşleroğlu, H. (2018). Püskürtmeli-Dondurarak Kurutma İşleminin Maltodekstrinin Fiziksel Özellikleri Üzerine Etkisi. Gıda, 43, 197–210. https://doi.org/10.153237/gida.GD17101
  • Volf, I., Ignat, I., Neamtu, M., & Popa, V. I. (2014). Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chemical Papers, 68(1), 121–129. https://doi.org/10.2478/s11696-013-0417-6
  • Zhang, L. L., Zhang, L. F., & Xu, J. G. (2020). Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.). Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-65802-7
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
There are 40 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Bilge Ertekin Filiz 0000-0002-5633-6641

Project Number FAB-2021-8252
Publication Date March 27, 2023
Submission Date January 11, 2023
Acceptance Date February 16, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Ertekin Filiz, B. (2023). Bioactive compounds of hawthorn powders produced by convectional and lyophilized foam mat drying method. International Journal of Agriculture Environment and Food Sciences, 7(1), 197-205. https://doi.org/10.31015/jaefs.2023.1.24
AMA Ertekin Filiz B. Bioactive compounds of hawthorn powders produced by convectional and lyophilized foam mat drying method. int. j. agric. environ. food sci. March 2023;7(1):197-205. doi:10.31015/jaefs.2023.1.24
Chicago Ertekin Filiz, Bilge. “Bioactive Compounds of Hawthorn Powders Produced by Convectional and Lyophilized Foam Mat Drying Method”. International Journal of Agriculture Environment and Food Sciences 7, no. 1 (March 2023): 197-205. https://doi.org/10.31015/jaefs.2023.1.24.
EndNote Ertekin Filiz B (March 1, 2023) Bioactive compounds of hawthorn powders produced by convectional and lyophilized foam mat drying method. International Journal of Agriculture Environment and Food Sciences 7 1 197–205.
IEEE B. Ertekin Filiz, “Bioactive compounds of hawthorn powders produced by convectional and lyophilized foam mat drying method”, int. j. agric. environ. food sci., vol. 7, no. 1, pp. 197–205, 2023, doi: 10.31015/jaefs.2023.1.24.
ISNAD Ertekin Filiz, Bilge. “Bioactive Compounds of Hawthorn Powders Produced by Convectional and Lyophilized Foam Mat Drying Method”. International Journal of Agriculture Environment and Food Sciences 7/1 (March 2023), 197-205. https://doi.org/10.31015/jaefs.2023.1.24.
JAMA Ertekin Filiz B. Bioactive compounds of hawthorn powders produced by convectional and lyophilized foam mat drying method. int. j. agric. environ. food sci. 2023;7:197–205.
MLA Ertekin Filiz, Bilge. “Bioactive Compounds of Hawthorn Powders Produced by Convectional and Lyophilized Foam Mat Drying Method”. International Journal of Agriculture Environment and Food Sciences, vol. 7, no. 1, 2023, pp. 197-05, doi:10.31015/jaefs.2023.1.24.
Vancouver Ertekin Filiz B. Bioactive compounds of hawthorn powders produced by convectional and lyophilized foam mat drying method. int. j. agric. environ. food sci. 2023;7(1):197-205.


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27