Research Article
BibTex RIS Cite

Morphological and pomological characterization of F2 generation cucumber (Cucumis sativus L.) plants of different fruit types

Year 2024, Volume: 8 Issue: 4, 932 - 943, 28.12.2024
https://doi.org/10.31015/jaefs.2024.4.23

Abstract

In general, when the traits related to cucumber breeding are examined, morphological traits such as leaf and flower characteristics, fruit; size, shape, spines, fruit flesh set, as well as yield are among the most important factors among the breeding selection criteria. The morphological and pomological characterization of 109 plants belonging to 16 F2 lines of different fruit types under soilless agriculture conditions were carried out and lines with breeding material value were identified. The average fruit weights of the lines with different fruit types were determined as mini (snack) type 53.88 g, beith alpha type 138.84 g, gherkin type 49.95 g and long european type 194.22 g. The highest fruit flesh firmness was determined as 0.98 kg/cm2 in lines with mini (snack) fruit type, while the lowest was determined as 0.59 kg/cm2 in lines with beith alpha fruit type. Warts on the fruit surface were detected on C355 and N285 lines with gherkin fruit type and C348 line with long european fruit type, while there were without warts on the fruit surfaces of other lines. Beith alpha fruit type, 8 plants of line C350 had monoecious flower structure, while the plants of other lines had gynoic flower structure. The longest internode was 13.75 cm in line N285 and the shortest internode was 8.53 cm in line C350. Differences between lines and plants with different fruit type were determined by principal component analysis. It was determined that there was a wide variation among the plants in terms of all the traits examined and the traits that can be used as breeding material for future studies in cucumber were identified.

References

  • Bo, K., Song, H., Shen, J., Qian, C., Staub, J. E., Simon, P. W., Lou, Q., & Chen, J. (2012). Inheritance and mapping of the ore gene controlling the quantity of β-carotene in cucumber (Cucumis sativus L.) endocarp. Molecular Breeding, 30(1), 335–344. https://doi.org/10.1007/S11032-011-9624-4/FIGURES/4.
  • Chakraborty, S., & Rayalu, S. (2021). Health Beneficial Effects of Cucumber. Cucumber Economic Values and Its Cultivation and Breeding. https://doi.org/10.5772/INTECHOPEN.96053.
  • FAO. (2022). Food and Agriculture Organization of the United Nations. Accessed on : 2024, April 25. https://www.fao.org/faostat/en/#data/QCL.
  • Gao, Z., Zhang, H., Cao, C., Han, J., Li, H., & Ren, Z. (2020). QTL Mapping for Cucumber Fruit Size and Shape with Populations from Long and Round Fruited Inbred Lines. Horticultural Plant Journal, 6(3), 132–144. https://doi.org/10.1016/J.HPJ.2020.04.004.
  • Grumet, R., Lin, Y. C., Rett-Cadman, S., & Malik, A. (2022). Morphological and Genetic Diversity of Cucumber (Cucumis sativus L.) Fruit Development. Plants 2023, Vol. 12, Page 23, 12(1), 23. https://doi.org/10.3390/PLANTS12010023.
  • Jo, H. E., Son, S. Y., & Lee, C. H. (2022). Comparison of Metabolome and Functional Properties of Three Korean Cucumber Cultivars. Frontiers in Plant Science, 13, 882120. https://doi.org/10.3389/FPLS.2022.882120/BIBTEX.
  • Koyama, S. (1986). Cucumber Breeding. Breeding Vegetable Crops, 7(4), 511–516. https://doi.org/10.2503/HRJ.7.511.
  • Kumar, S., Kumar, D., Kumar, R., Thakur, K., & Singh Dogra, B. (2013). Estimation of Genetic Variability and Divergence for Fruit Yield and Quality Traits in Cucumber (Cucumis Sativus L.) in North-Western Himalays. Universal Journal of Plant Science, 1(2), 27–36. https://doi.org/10.13189/UJPS.2013.010201.
  • Mercke, P., Kappers, I. F., Verstappen, F. W. A., Vorst, O., Dicke, M., & Bouwmeester, H. J. (2004). Combined Transcript and Metabolite Analysis Reveals Genes Involved in Spider Mite Induced Volatile Formation in Cucumber Plants. Plant Physiology, 135(4), 2012–2024. https://doi.org/10.1104/PP.104.048116.
  • Miao, L., Di, Q., Sun, T., Li, Y., Duan, Y., Wang, J., Yan, Y., He, C., Wang, C., & Yu, X. (2019). Integrated Metabolome and Transcriptome Analysis Provide Insights into the Effects of Grafting on Fruit Flavor of Cucumber with Different Rootstocks. International Journal of Molecular Sciences 2019, Vol. 20, Page 3592, 20(14), 3592. https://doi.org/10.3390/IJMS20143592.
  • Robinson, R. W., & Decker-Walters, D. S. (1997). Crop Production Science in Horticulture. Cucurbits, 153. https://books.google.com/books/about/Cucurbits.html?hl=tr&id=y0PEQgAACAAJ.
  • Salcedo, G. A., García-Caparrós, P., Pérez-Saiz, M., Reca, J., & Lao, M. T. (2018). Nutrient demand modeling of a soilless cucumber crop under greenhouses conditions in a humid tropical climate. Communications in Soil Science and Plant Analysis, 49(20), 2546–2556. https://doi.org/10.1080/00103624.2018.1526943.
  • Shimomura, K., Fukino, N., Sugiyama, M., Kawazu, Y., Sakata, Y., & Yoshioka, Y. (2017). Quantitative trait locus analysis of cucumber fruit morphological traits based on image analysis. Euphytica, 213(7), 1–13. https://doi.org/10.1007/S10681-017-1926-0/TABLES/3.
  • Valcárcel, J. V., Peiró, R. M., Pérez-de-Castro, A., & Díez, M. J. (2018). Morphological characterization of the cucumber (Cucumis sativus L.) collection of the COMAV’s Genebank. Genetic Resources and Crop Evolution, 65(4), 1293–1306. https://doi.org/10.1007/S10722-018-0614-9/FIGURES/3.
  • Wang, M., Chen, L., Liang, Z., He, X., Liu, W., Jiang, B., Yan, J., Sun, P., Cao, Z., Peng, Q., & Lin, Y. (2020). Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color. BMC Plant Biology, 20(1), 1–13. https://doi.org/10.1186/S12870-020-02597-9/FIGURES/7.
  • Wei, Q. Z., Fu, W. Y., Wang, Y. Z., Qin, X. D., Wang, J., Li, J., Lou, Q. F., & Chen, J. F. (2016). Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep27496.
  • Yang, X., Zhang, W., He, H., Nie, J., Bie, B., Zhao, J., Ren, G., Li, Y., Zhang, D., Pan, J., & Cai, R. (2014). Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). The Plant Journal, 78(6), 1034–1046. https://doi.org/10.1111/TPJ.12531.
  • Zhang, J., Feng, S., Yuan, J., Wang, C., Lu, T., Wang, H., & Yu, C. (2021). The Formation of Fruit Quality in Cucumis sativus L. Frontiers in Plant Science, 12, 729448. https://doi.org/10.3389/FPLS.2021.729448/BIBTEX.
  • Zhu, W. Y., Huang, L., Chen, L., Yang, J. T., Wu, J. N., Qu, M. L., Yao, D. Q., Guo, C. L., Lian, H. L., He, H. Le, Pan, J. S., & Cai, R. (2016). A high-density genetic linkage map for cucumber (Cucumis sativus L.): Based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Frontiers in Plant Science, 7(APR2016), 174033. https://doi.org/10.3389/FPLS.2016.00437/BIBTEX.
Year 2024, Volume: 8 Issue: 4, 932 - 943, 28.12.2024
https://doi.org/10.31015/jaefs.2024.4.23

Abstract

References

  • Bo, K., Song, H., Shen, J., Qian, C., Staub, J. E., Simon, P. W., Lou, Q., & Chen, J. (2012). Inheritance and mapping of the ore gene controlling the quantity of β-carotene in cucumber (Cucumis sativus L.) endocarp. Molecular Breeding, 30(1), 335–344. https://doi.org/10.1007/S11032-011-9624-4/FIGURES/4.
  • Chakraborty, S., & Rayalu, S. (2021). Health Beneficial Effects of Cucumber. Cucumber Economic Values and Its Cultivation and Breeding. https://doi.org/10.5772/INTECHOPEN.96053.
  • FAO. (2022). Food and Agriculture Organization of the United Nations. Accessed on : 2024, April 25. https://www.fao.org/faostat/en/#data/QCL.
  • Gao, Z., Zhang, H., Cao, C., Han, J., Li, H., & Ren, Z. (2020). QTL Mapping for Cucumber Fruit Size and Shape with Populations from Long and Round Fruited Inbred Lines. Horticultural Plant Journal, 6(3), 132–144. https://doi.org/10.1016/J.HPJ.2020.04.004.
  • Grumet, R., Lin, Y. C., Rett-Cadman, S., & Malik, A. (2022). Morphological and Genetic Diversity of Cucumber (Cucumis sativus L.) Fruit Development. Plants 2023, Vol. 12, Page 23, 12(1), 23. https://doi.org/10.3390/PLANTS12010023.
  • Jo, H. E., Son, S. Y., & Lee, C. H. (2022). Comparison of Metabolome and Functional Properties of Three Korean Cucumber Cultivars. Frontiers in Plant Science, 13, 882120. https://doi.org/10.3389/FPLS.2022.882120/BIBTEX.
  • Koyama, S. (1986). Cucumber Breeding. Breeding Vegetable Crops, 7(4), 511–516. https://doi.org/10.2503/HRJ.7.511.
  • Kumar, S., Kumar, D., Kumar, R., Thakur, K., & Singh Dogra, B. (2013). Estimation of Genetic Variability and Divergence for Fruit Yield and Quality Traits in Cucumber (Cucumis Sativus L.) in North-Western Himalays. Universal Journal of Plant Science, 1(2), 27–36. https://doi.org/10.13189/UJPS.2013.010201.
  • Mercke, P., Kappers, I. F., Verstappen, F. W. A., Vorst, O., Dicke, M., & Bouwmeester, H. J. (2004). Combined Transcript and Metabolite Analysis Reveals Genes Involved in Spider Mite Induced Volatile Formation in Cucumber Plants. Plant Physiology, 135(4), 2012–2024. https://doi.org/10.1104/PP.104.048116.
  • Miao, L., Di, Q., Sun, T., Li, Y., Duan, Y., Wang, J., Yan, Y., He, C., Wang, C., & Yu, X. (2019). Integrated Metabolome and Transcriptome Analysis Provide Insights into the Effects of Grafting on Fruit Flavor of Cucumber with Different Rootstocks. International Journal of Molecular Sciences 2019, Vol. 20, Page 3592, 20(14), 3592. https://doi.org/10.3390/IJMS20143592.
  • Robinson, R. W., & Decker-Walters, D. S. (1997). Crop Production Science in Horticulture. Cucurbits, 153. https://books.google.com/books/about/Cucurbits.html?hl=tr&id=y0PEQgAACAAJ.
  • Salcedo, G. A., García-Caparrós, P., Pérez-Saiz, M., Reca, J., & Lao, M. T. (2018). Nutrient demand modeling of a soilless cucumber crop under greenhouses conditions in a humid tropical climate. Communications in Soil Science and Plant Analysis, 49(20), 2546–2556. https://doi.org/10.1080/00103624.2018.1526943.
  • Shimomura, K., Fukino, N., Sugiyama, M., Kawazu, Y., Sakata, Y., & Yoshioka, Y. (2017). Quantitative trait locus analysis of cucumber fruit morphological traits based on image analysis. Euphytica, 213(7), 1–13. https://doi.org/10.1007/S10681-017-1926-0/TABLES/3.
  • Valcárcel, J. V., Peiró, R. M., Pérez-de-Castro, A., & Díez, M. J. (2018). Morphological characterization of the cucumber (Cucumis sativus L.) collection of the COMAV’s Genebank. Genetic Resources and Crop Evolution, 65(4), 1293–1306. https://doi.org/10.1007/S10722-018-0614-9/FIGURES/3.
  • Wang, M., Chen, L., Liang, Z., He, X., Liu, W., Jiang, B., Yan, J., Sun, P., Cao, Z., Peng, Q., & Lin, Y. (2020). Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color. BMC Plant Biology, 20(1), 1–13. https://doi.org/10.1186/S12870-020-02597-9/FIGURES/7.
  • Wei, Q. Z., Fu, W. Y., Wang, Y. Z., Qin, X. D., Wang, J., Li, J., Lou, Q. F., & Chen, J. F. (2016). Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep27496.
  • Yang, X., Zhang, W., He, H., Nie, J., Bie, B., Zhao, J., Ren, G., Li, Y., Zhang, D., Pan, J., & Cai, R. (2014). Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). The Plant Journal, 78(6), 1034–1046. https://doi.org/10.1111/TPJ.12531.
  • Zhang, J., Feng, S., Yuan, J., Wang, C., Lu, T., Wang, H., & Yu, C. (2021). The Formation of Fruit Quality in Cucumis sativus L. Frontiers in Plant Science, 12, 729448. https://doi.org/10.3389/FPLS.2021.729448/BIBTEX.
  • Zhu, W. Y., Huang, L., Chen, L., Yang, J. T., Wu, J. N., Qu, M. L., Yao, D. Q., Guo, C. L., Lian, H. L., He, H. Le, Pan, J. S., & Cai, R. (2016). A high-density genetic linkage map for cucumber (Cucumis sativus L.): Based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Frontiers in Plant Science, 7(APR2016), 174033. https://doi.org/10.3389/FPLS.2016.00437/BIBTEX.
There are 19 citations in total.

Details

Primary Language English
Subjects Agricultural Biotechnology Diagnostics
Journal Section Research Articles
Authors

Alim Aydın 0000-0002-9424-5556

Hakan Başak 0000-0002-1128-4059

Early Pub Date December 25, 2024
Publication Date December 28, 2024
Submission Date September 19, 2024
Acceptance Date December 14, 2024
Published in Issue Year 2024 Volume: 8 Issue: 4

Cite

APA Aydın, A., & Başak, H. (2024). Morphological and pomological characterization of F2 generation cucumber (Cucumis sativus L.) plants of different fruit types. International Journal of Agriculture Environment and Food Sciences, 8(4), 932-943. https://doi.org/10.31015/jaefs.2024.4.23


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27