Synergist effects of some PGPR bacteria and sodium nitroprusside in pepper plant
Year 2024,
Volume: 8 Issue: 4, 894 - 903
Zeliha Kayaaslan
,
Servet Aras
,
Gökçe Aydöner Çoban
Abstract
Plant growth promoting rhizobacteria (PGPR) represent promotes plant growth by increasing the supply or availability of nutrients to the host plant. These bacterial applications are environmentally friendly techniques and their use has become widespread recently. Some PGPRs can increase nitrogen (N) fixation and have phosphate (P) solubilizing property. In the current study, we evaluated the synergistic effects of some useful bacteria and sodium nitroprusside (SNP, a nitric oxide donor) in pepper plant. Nitric oxide (NO) acts as a signal molecule in plants and has important role in plant-bacteria symbiosis interaction. Three PGPR strains namely, Enterobacter cloacae (ZE-2), Pseudomonas putida (ZE-12) and Acinetobacter calcoaceticus (ZE-13) were used and the bacteria possess phosphorous-solubilizing and nitrogen-fixing properties. The applications of PGPRs alone and with combination of SNP (0.1 mM) were performed to the plant rhizosphere (the roots) through irrigation two times with two weeks interval starting with seedling planting. End of the study, many morphological parameters including stem diameter, plant height and biomass were improved by all applications compared to control. Root:shoot dry weight ratio decreased by the applications. Stem diameter, plant height and biomass were significantly increased with all treatments compared to control. The yield was found higher in all applications compared to control and the highest increase in the yield was provided by Enterobacter cloacae (ZE-2) application. Dry matter allocation in upper part of the plants provided higher plant yield. The applications significantly affected cell expansion and division. SNP increased the effect of Acinetobacter calcoaceticus (ZE-13) bacteria on cell division in leaf cells and midrib size. Furthermore, Pseudomonas putida (ZE-12) increased the yield combining with SNP compared to alone use. The increase in the plant growth is related with the midrib size. The application of PGPR with SNP could be a promising approach in plant growing.
References
- Admassie, M., Woldehawariat, Y., Alemu, T., Gonzalez, E. and Jimenez, J.F. (2022). The role of plant growth-promoting bacteria in alleviating drought stress on pepper plants. Agricultural Water Management, 272: 107831. https://doi.org/10.1016/j.agwat.2022.107831
- Ahmad, F., Ahmad, I. and ved Khan, M.S. (2005). Indole acetic acid production by the indigenous isolates of azotobacter and fluorescent pseudomonas in the pserence and absence of tryptophan. Turkish Journal of Biology, 29: 29-34. https://journals.tubitak.gov.tr/biology/vol29/iss1/5
- Alkaç OS, Öndeş E, Belgüzar S, Okatar F, Kayaaslan Z (2022a). Farklı kök bakterisi ve mikoriza uygulamalarının yıldız çiçeği (Dahlia variabilis) fidelerinin büyüme ve gelişimine etkileri. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(2) : 331-339. DOI: 10.37908/mkutbd.1092636
- Alkaç, O. S., Belgüzar, S., Kayaaslan, Z., Tuncel, E., & Aldırmaz, S. (2022b). The Effect of Plant Growth Promoting Rhizobacteria and Mycorrhiza Applications on The Growth of Zinnia elegans L. and Dahlia variabilis L.
- Aminifard, M.H., Aroiee, H., Ameri, A. and Fatemi, H. (2012). Effect of plant density and nitrogen fertilizer on growth, yield and fruit quality of sweet pepper (Capsicum annum L.). African Journal of Agricultural, 7(6): 859-866. https://doi.org/10.5897/AJAR10.505
- Aras, S. and Endes, A. (2023). Effect of Fusarium oxysporum infection on strawberry under calcium, iron, and zinc deficiency conditions. Zemdirbyste-Agriculture, 110 (1): 71-78. DOI 10.13080/z-a.2023.110.010
- Aras, S. (2022a). Alterations in leaf cellular physiology and chlorophyll biosynthesis during leaf expansion in peach tree. Bozok Journal of Agriculture and Natural Sciences, 1(2): 136-140.
- Aras, S. (2022b). Cortical cells, xylem vessels, and chlorophyll biosynthesis improved by acetylsalicylic acid and sodium nitroprusside in peach leaves. Journal of Agriculture Faculty of Ege University, 59(3): 409-417. https://doi.org/10.20289/zfdergi.1037526
- Aras, S. (2022c). Sodium nitroprusside and acetylsalicylic acid provided earliness in peach flower bud phenological stages by triggering xylogenesis. Zemdirbyste-Agriculture, 109 (4): 365–372. https://doi.org/10.13080/z-a.2022.109.047
- Aras, S., Arıkan, Ş., İpek, M., Eşitken, A., Pırlak, L., Dönmez, M.F. and Turan, M. (2018). Plant growth promoting rhizobacteria enhanced leaf organic acids, FC-R activity and Fe nutrition of apple under lime soil conditions. Acta Physiologiae Plantarum, 40(6): 120. https://doi.org/10.1007/s11738-018-2693-9
- Aras, S., Eşitken, A. and Karakurt, Y. (2019). Morphological and physiological responses and some WRKY genes expression in cherry rootstocks under salt stress. Spanish Journal of Agricultural Research, 17(4): e0806-e0806. https://doi.org/10.5424/sjar/2019174-15400
- Aras, S., Keles, H. and Bozkurt, E. (2021). Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae, 281: 109967. https://doi.org/10.1016/j.scienta.2021.109967
- Aras, S., Keles, H. and Eşitken, A. (2020). SNP Mitigates Malignant Salt Effects on Apple Plants. Erwerbs-Obstbau. 62: 107-115. https://doi.org/10.1007/s10341-019-00445-1
- Arıkan, Ş., Eşitken, A., İpek, M., Aras, S., Şahin, M., Pırlak, L., Dönmez, M.F. and Turan, M. (2018). Effect of plant growth promoting rhizobacteria on Fe acquisition in peach (Prunus persica L) under calcareous soil conditions. Journal of Plant Nutrition, 41 (17): 2141-2150. https://doi.org/10.1080/01904167.2018.1482910
- Arun, M., Naing, A.H., Jeon, S.M., Ai, T.N., Aye, T. and Kim, C.K. (2017). Sodium nitroprusside stimulates growth and shoot regeneration in chrysanthemum. Horticulture, Environment, and Biotechnology, 58: 78-84. https://doi.org/10.1007/s13580-017-0070-z
- Belgüzar, S., Ciner, I., Eroglu Z. and Yanar, Y. (2021). Effects of rhizobacteria on tomato bacterial cancer and wilt disease. Fresenius Environmental Bulletin, 1075.
- Brodersen, C.R., Roddy, A.B., Wason, J.W. and McElrone, A.J. (2019). Functional status of xylem through time. Annual Review of Plant Biology, 70: 407-433. https://doi.org/10.1146/annurev-arplant-050718-100455
- Bulut, S. (2013). Evaluation of yield and quality parameters of phosphorous-solubilizing and N-fixing bacteria inoculated in wheat (Triticum aestivum L.). Turkish Journal of Agriculture and Forestry, 37(5): 545-554. https://doi.org/10.3906/tar-1212-96
- Carillo, P., Raimondi, G., Kyriacou, M.C., Pannico, A., El-Nakhel, C., Cirillo, V., Colla, G., De Pascale, S. and Rouphael, Y. (2019). Morpho-physiological and homeostatic adaptive responses triggered by omeprazole enhance lettuce tolerance to salt stress. Scientia Horticulturae, 249: 22-30. https://doi.org/10.1016/j.scienta.2019.01.038
- Collavino, M.M., Sansberro, P.A., Mroginski, L.A. and Aguilar, O.M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46: 727–738. https://doi.org/10.1007/s00374-010-0480-x
- Devi, R., Kaur, T., Kour, D. and Yadav, A.N. (2022). Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatalysis and Agricultural Biotechnology, 43: 102404. https://doi.org/10.1016/j.bcab.2022.102404
- Dixon, R. and Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2(8): 621–631. https://doi.org/10.1038/nrmicro954
- Ergin, S.F. and Gülser, F. (2016). Effect of mycorrhiza on growth criteria and phosphorus nutrition of lettuce (Lactuca sativa L.) under different phosphorus application rates. Eurasian Journal of Soil Science, 5: 275. https://doi.org/10.18393/ejss.2016.4.275-278
- Esringu, A., Aksakal, O., Tabay, D. and Kara, A.A. (2016). Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings. Environmental Science and Pollution Research, 23: 589-597. https://doi.org/10.1007/s11356-015-5301-1
- Fatma, M., Masood, A., Per, T.S. and Khan, N.A. (2016). Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Frontiers in Plant Science, 7: 521. https://doi.org/10.3389/fpls.2016.00521
- Filippou, P., Antoniou, C., Yelamanchili, S. and Fotopoulos, V. (2012). NO loading:efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatula plants. Plant Physiology and Biochemistry, 60: 115–118. https://doi.org/10.1016/j.plaphy.2012.07.026
- García, J.L., Probanza, A., Ramos, B. and Mañero, F.G. (2003). Effects of three plant growth-promoting rhizobacteria on the growth of seedlings of tomato and pepper in two different sterilized and nonsterilized peats. Archives of Agronomy and Soil Science, 49(1): 119-127. https://doi.org/10.1080/0365034031000079711
- Gonzalez, N., Vanhaeren, H. and Inzé, D. (2012). Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 17(6): 332-340. https://doi.org/10.1016/j.tplants.2012.02.003
- Han, X., Yang, H., Duan, K., Zhang, X., Zhao, H., You, S. and Jiang, Q. (2009). Sodium nitroprusside promotes multiplication and regeneration of Malus hupehensis in vitro plantlets. Plant Cell, Tissue and Organ Culture, 96: 29-34. https://doi.org/10.1007/s11240-008-9456-z
- Hayat, S., Yadav, S., Wani, A.S., Irfan, M., Alyemini, M.N. and Ahmad, A. (2012). Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Horticulture, Environment, and Biotechnology, 53: 362-367. https://doi.org/10.1007/s13580-012-0481-9
- He, Y.K., Tang, R.H., Yi, H., Stevens, R.D., Cook, C.W., Ahn, S.M., Jing, L., Yang, Z., Chen, L., Guo, F., Fiorani, F., Jackson, R.B, Crawford, N.M. and Pei, Z.M. (2004). Nitric oxide represses the Arabidopsis floral transition. Science, 305: 1968–1971. https://doi.org/10.1126/science.1098837
- İpek, M., Aras, S., Arıkan, Ş., Eşitken, A., Pırlak, L., Dönmez, M.F. and Turan, M. (2017). Root plant growth promoting rhizobacteria inoculations increase ferric chelate reductase (FC-R) activity and Fe nutrition in pear under calcareous soil conditions. Scientia Horticulturae, 219: 144-151. https://doi.org/10.1016/j.scienta.2017.02.043
- Islam, M.R., Sultana, T., Joe, M.M., Yim, W., Cho, J.C. and Sa, T. (2013). Nitrogen‐fixing bacteria with multiple plant growth‐promoting activities enhance growth of tomato and red pepper. Journal of Basic Microbiology, 53(12): 1004-1015. https://doi.org/10.1002/jobm.201200141
- Johri, J.K., Surange, S. and Narula, C.S. (1999). Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Current Microbiology, 39: 89-93. https://doi.org/10.1007/s002849900424
- Kavanová, M., Lattanzi, F.A., Grimoldi, A.A. and Schnyder, H. (2006). Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant Physiology, 141(2): 766-775. https://doi.org/10.1104/pp.106.079699
- Kaya, C., Akram, N.A., Sürücü, A. and Ashraf, M. (2019). Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Scientia Horticulturae, 255: 52-60. https://doi.org/10.1016/j.scienta.2019.05.029
- Kılıç, T., 2023. Seed treatments with salicylic and succinic acid to mitigate drought stress in flowering kale cv.'Red Pigeon F1'. Scientia Horticulturae, 313: 111939. https://doi.org/10.1016/j.scienta.2023.111939
- Li, X., Wang, S., Chen, X., Cong, Y., Cui, J., Shi, Q., Liu, H. and Diao, M. (2022). The positive effects of exogenous sodium nitroprusside on the plant growth, photosystem II efficiency and Calvin cycle of tomato seedlings under salt stress. Scientia Horticulturae, 299: 111016. https://doi.org/10.1016/j.scienta.2022.111016
- Mia, M.B., Shamsuddin, Z.H., Wahab, Z. and Marziah, M. (2010). Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv.‘Berangan’). Scientia Horticulturae, 126(2): 80-87. https://doi.org/10.1016/j.scienta.2010.06.005
- Mirik, M., Aysan, Y. and Cinar, O. (2008). Biological control of bacterial spot disease of pepper with Bacillus strains. Turkish Journal of Agriculture and Forestry, 32: 381–390.
- Mohammed, S.S., Osman, A.G., Mohammed, A.M., Abdalla, A.S., Sherif, A.M. and Rugheim, A.M.E. (2012). Effects of organic and microbial fertilization on wheat growth and yield. International Research Journal of Agricultural Science and Soil Science, 2: 149–154.
- Nautiyal, C. S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters,170:265270.
- O'Brien, T., Feder, N., McCully, M.E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59(2): 368-373.
- Olivera, M., Tejera, N., Iribarne, C., Ocana, A. and Lluch, C. (2004). Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiologia Plantarum, 121(3): 498-505. https://doi.org/10.1111/j.0031-9317.2004.00355.x
- Otvos, K., Pasternak, T.P., Miskolczi, P., Domoki, M., Dorjgotov, D., Szucs, A., Bottka, S., Dudits, D. and Feher, A. (2005). Nitric oxide is required for, and promotes auxin‐mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. The Plant Journal, 43(6): 849-860. https://doi.org/10.1111/j.1365-313X.2005.02494.x
- Scheible, W.R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M.K. and Stitt, M. (2004). Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology, 136(1): 2483-2499. https://doi.org/10.1104/pp.104.047019
- Shams, M., Ekinci, M., Ors, S., Turan, M., Agar, G., Kul, R. and Yildirim, E. (2019). Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants, 25: 1149-1161. https://doi.org/10.1007/s12298-019-00692-2
- Sharma, A., Singh, R.K., Singh, P., Vaishnav, A., Guo, D.J., Verma, K.K., Li, D.P., Song, X.P., Malviya, M.K., Khan, N., Lakshmanan, P. and Li, Y.R. (2021). Insights into the bacterial and nitric oxide-induced salt tolerance in sugarcane and their growth-promoting abilities. Microorganisms, 9(11): 2203. https://doi.org/10.3390/microorganisms9112203
- Siddiqui, M.H., Al-Whaibi, M.H. and Basalah, M.O. (2011). Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248: 447-455. https://doi.org/10.1007/s00709-010-0206-9
- Tahiri, A.I., Raklami, A., Bechtaoui, N., Anli, M., Boutasknit, A., Oufdou, K. and Meddich, A. (2022). Beneficial effects of plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and compost on lettuce (Lactuca sativa) growth under field conditions. Gesunde Pflanzen, 74: 219–235. https://doi.org/10.1007/s10343-021-00604-z
- Takahashi, S. and Yamasaki, H. (2002). Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Letters, 512: 145–148. https://doi.org/10.1016/S0014-5793(02)02244-5
- Vaishnav, A., Kumari, S., Jain, S., Varma, A., Tuteja, N. and Choudhary, D.K. (2016). PGPR‐mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. Journal of Basic Microbiology, 56(11): 1274-1288. https://doi.org/10.1002/jobm.201600188
- Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2): 571-586. https://doi.org/10.1023/A:1026037216893
- Wang, J., Qu, F., Liang, J., Yang, M. and Hu, X. (2022). Bacillus velezensis SX13 promoted cucumber growth and production by accelerating the absorption of nutrients and increasing plant photosynthetic metabolism. Scientia Horticulturae, 301: 111151. https://doi.org/10.1016/j.scienta.2022.111151
- Wang, Y. and Ruby, E.G. (2011). The roles of NO in microbial symbioses. Cellular Microbiology, 13(4): 518-526. https://doi.org/10.1111/j.1462-5822.2011.01576.x
- Zaidi, A., Ahmad, E., Khan, M.S., Saif, S. and Rizvi, A. (2015). Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Scientia Horticulturae, 193: 231-239. https://doi.org/10.1016/j.scienta.2015.07.020
Year 2024,
Volume: 8 Issue: 4, 894 - 903
Zeliha Kayaaslan
,
Servet Aras
,
Gökçe Aydöner Çoban
References
- Admassie, M., Woldehawariat, Y., Alemu, T., Gonzalez, E. and Jimenez, J.F. (2022). The role of plant growth-promoting bacteria in alleviating drought stress on pepper plants. Agricultural Water Management, 272: 107831. https://doi.org/10.1016/j.agwat.2022.107831
- Ahmad, F., Ahmad, I. and ved Khan, M.S. (2005). Indole acetic acid production by the indigenous isolates of azotobacter and fluorescent pseudomonas in the pserence and absence of tryptophan. Turkish Journal of Biology, 29: 29-34. https://journals.tubitak.gov.tr/biology/vol29/iss1/5
- Alkaç OS, Öndeş E, Belgüzar S, Okatar F, Kayaaslan Z (2022a). Farklı kök bakterisi ve mikoriza uygulamalarının yıldız çiçeği (Dahlia variabilis) fidelerinin büyüme ve gelişimine etkileri. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(2) : 331-339. DOI: 10.37908/mkutbd.1092636
- Alkaç, O. S., Belgüzar, S., Kayaaslan, Z., Tuncel, E., & Aldırmaz, S. (2022b). The Effect of Plant Growth Promoting Rhizobacteria and Mycorrhiza Applications on The Growth of Zinnia elegans L. and Dahlia variabilis L.
- Aminifard, M.H., Aroiee, H., Ameri, A. and Fatemi, H. (2012). Effect of plant density and nitrogen fertilizer on growth, yield and fruit quality of sweet pepper (Capsicum annum L.). African Journal of Agricultural, 7(6): 859-866. https://doi.org/10.5897/AJAR10.505
- Aras, S. and Endes, A. (2023). Effect of Fusarium oxysporum infection on strawberry under calcium, iron, and zinc deficiency conditions. Zemdirbyste-Agriculture, 110 (1): 71-78. DOI 10.13080/z-a.2023.110.010
- Aras, S. (2022a). Alterations in leaf cellular physiology and chlorophyll biosynthesis during leaf expansion in peach tree. Bozok Journal of Agriculture and Natural Sciences, 1(2): 136-140.
- Aras, S. (2022b). Cortical cells, xylem vessels, and chlorophyll biosynthesis improved by acetylsalicylic acid and sodium nitroprusside in peach leaves. Journal of Agriculture Faculty of Ege University, 59(3): 409-417. https://doi.org/10.20289/zfdergi.1037526
- Aras, S. (2022c). Sodium nitroprusside and acetylsalicylic acid provided earliness in peach flower bud phenological stages by triggering xylogenesis. Zemdirbyste-Agriculture, 109 (4): 365–372. https://doi.org/10.13080/z-a.2022.109.047
- Aras, S., Arıkan, Ş., İpek, M., Eşitken, A., Pırlak, L., Dönmez, M.F. and Turan, M. (2018). Plant growth promoting rhizobacteria enhanced leaf organic acids, FC-R activity and Fe nutrition of apple under lime soil conditions. Acta Physiologiae Plantarum, 40(6): 120. https://doi.org/10.1007/s11738-018-2693-9
- Aras, S., Eşitken, A. and Karakurt, Y. (2019). Morphological and physiological responses and some WRKY genes expression in cherry rootstocks under salt stress. Spanish Journal of Agricultural Research, 17(4): e0806-e0806. https://doi.org/10.5424/sjar/2019174-15400
- Aras, S., Keles, H. and Bozkurt, E. (2021). Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae, 281: 109967. https://doi.org/10.1016/j.scienta.2021.109967
- Aras, S., Keles, H. and Eşitken, A. (2020). SNP Mitigates Malignant Salt Effects on Apple Plants. Erwerbs-Obstbau. 62: 107-115. https://doi.org/10.1007/s10341-019-00445-1
- Arıkan, Ş., Eşitken, A., İpek, M., Aras, S., Şahin, M., Pırlak, L., Dönmez, M.F. and Turan, M. (2018). Effect of plant growth promoting rhizobacteria on Fe acquisition in peach (Prunus persica L) under calcareous soil conditions. Journal of Plant Nutrition, 41 (17): 2141-2150. https://doi.org/10.1080/01904167.2018.1482910
- Arun, M., Naing, A.H., Jeon, S.M., Ai, T.N., Aye, T. and Kim, C.K. (2017). Sodium nitroprusside stimulates growth and shoot regeneration in chrysanthemum. Horticulture, Environment, and Biotechnology, 58: 78-84. https://doi.org/10.1007/s13580-017-0070-z
- Belgüzar, S., Ciner, I., Eroglu Z. and Yanar, Y. (2021). Effects of rhizobacteria on tomato bacterial cancer and wilt disease. Fresenius Environmental Bulletin, 1075.
- Brodersen, C.R., Roddy, A.B., Wason, J.W. and McElrone, A.J. (2019). Functional status of xylem through time. Annual Review of Plant Biology, 70: 407-433. https://doi.org/10.1146/annurev-arplant-050718-100455
- Bulut, S. (2013). Evaluation of yield and quality parameters of phosphorous-solubilizing and N-fixing bacteria inoculated in wheat (Triticum aestivum L.). Turkish Journal of Agriculture and Forestry, 37(5): 545-554. https://doi.org/10.3906/tar-1212-96
- Carillo, P., Raimondi, G., Kyriacou, M.C., Pannico, A., El-Nakhel, C., Cirillo, V., Colla, G., De Pascale, S. and Rouphael, Y. (2019). Morpho-physiological and homeostatic adaptive responses triggered by omeprazole enhance lettuce tolerance to salt stress. Scientia Horticulturae, 249: 22-30. https://doi.org/10.1016/j.scienta.2019.01.038
- Collavino, M.M., Sansberro, P.A., Mroginski, L.A. and Aguilar, O.M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46: 727–738. https://doi.org/10.1007/s00374-010-0480-x
- Devi, R., Kaur, T., Kour, D. and Yadav, A.N. (2022). Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatalysis and Agricultural Biotechnology, 43: 102404. https://doi.org/10.1016/j.bcab.2022.102404
- Dixon, R. and Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2(8): 621–631. https://doi.org/10.1038/nrmicro954
- Ergin, S.F. and Gülser, F. (2016). Effect of mycorrhiza on growth criteria and phosphorus nutrition of lettuce (Lactuca sativa L.) under different phosphorus application rates. Eurasian Journal of Soil Science, 5: 275. https://doi.org/10.18393/ejss.2016.4.275-278
- Esringu, A., Aksakal, O., Tabay, D. and Kara, A.A. (2016). Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings. Environmental Science and Pollution Research, 23: 589-597. https://doi.org/10.1007/s11356-015-5301-1
- Fatma, M., Masood, A., Per, T.S. and Khan, N.A. (2016). Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Frontiers in Plant Science, 7: 521. https://doi.org/10.3389/fpls.2016.00521
- Filippou, P., Antoniou, C., Yelamanchili, S. and Fotopoulos, V. (2012). NO loading:efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatula plants. Plant Physiology and Biochemistry, 60: 115–118. https://doi.org/10.1016/j.plaphy.2012.07.026
- García, J.L., Probanza, A., Ramos, B. and Mañero, F.G. (2003). Effects of three plant growth-promoting rhizobacteria on the growth of seedlings of tomato and pepper in two different sterilized and nonsterilized peats. Archives of Agronomy and Soil Science, 49(1): 119-127. https://doi.org/10.1080/0365034031000079711
- Gonzalez, N., Vanhaeren, H. and Inzé, D. (2012). Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 17(6): 332-340. https://doi.org/10.1016/j.tplants.2012.02.003
- Han, X., Yang, H., Duan, K., Zhang, X., Zhao, H., You, S. and Jiang, Q. (2009). Sodium nitroprusside promotes multiplication and regeneration of Malus hupehensis in vitro plantlets. Plant Cell, Tissue and Organ Culture, 96: 29-34. https://doi.org/10.1007/s11240-008-9456-z
- Hayat, S., Yadav, S., Wani, A.S., Irfan, M., Alyemini, M.N. and Ahmad, A. (2012). Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Horticulture, Environment, and Biotechnology, 53: 362-367. https://doi.org/10.1007/s13580-012-0481-9
- He, Y.K., Tang, R.H., Yi, H., Stevens, R.D., Cook, C.W., Ahn, S.M., Jing, L., Yang, Z., Chen, L., Guo, F., Fiorani, F., Jackson, R.B, Crawford, N.M. and Pei, Z.M. (2004). Nitric oxide represses the Arabidopsis floral transition. Science, 305: 1968–1971. https://doi.org/10.1126/science.1098837
- İpek, M., Aras, S., Arıkan, Ş., Eşitken, A., Pırlak, L., Dönmez, M.F. and Turan, M. (2017). Root plant growth promoting rhizobacteria inoculations increase ferric chelate reductase (FC-R) activity and Fe nutrition in pear under calcareous soil conditions. Scientia Horticulturae, 219: 144-151. https://doi.org/10.1016/j.scienta.2017.02.043
- Islam, M.R., Sultana, T., Joe, M.M., Yim, W., Cho, J.C. and Sa, T. (2013). Nitrogen‐fixing bacteria with multiple plant growth‐promoting activities enhance growth of tomato and red pepper. Journal of Basic Microbiology, 53(12): 1004-1015. https://doi.org/10.1002/jobm.201200141
- Johri, J.K., Surange, S. and Narula, C.S. (1999). Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Current Microbiology, 39: 89-93. https://doi.org/10.1007/s002849900424
- Kavanová, M., Lattanzi, F.A., Grimoldi, A.A. and Schnyder, H. (2006). Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant Physiology, 141(2): 766-775. https://doi.org/10.1104/pp.106.079699
- Kaya, C., Akram, N.A., Sürücü, A. and Ashraf, M. (2019). Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Scientia Horticulturae, 255: 52-60. https://doi.org/10.1016/j.scienta.2019.05.029
- Kılıç, T., 2023. Seed treatments with salicylic and succinic acid to mitigate drought stress in flowering kale cv.'Red Pigeon F1'. Scientia Horticulturae, 313: 111939. https://doi.org/10.1016/j.scienta.2023.111939
- Li, X., Wang, S., Chen, X., Cong, Y., Cui, J., Shi, Q., Liu, H. and Diao, M. (2022). The positive effects of exogenous sodium nitroprusside on the plant growth, photosystem II efficiency and Calvin cycle of tomato seedlings under salt stress. Scientia Horticulturae, 299: 111016. https://doi.org/10.1016/j.scienta.2022.111016
- Mia, M.B., Shamsuddin, Z.H., Wahab, Z. and Marziah, M. (2010). Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv.‘Berangan’). Scientia Horticulturae, 126(2): 80-87. https://doi.org/10.1016/j.scienta.2010.06.005
- Mirik, M., Aysan, Y. and Cinar, O. (2008). Biological control of bacterial spot disease of pepper with Bacillus strains. Turkish Journal of Agriculture and Forestry, 32: 381–390.
- Mohammed, S.S., Osman, A.G., Mohammed, A.M., Abdalla, A.S., Sherif, A.M. and Rugheim, A.M.E. (2012). Effects of organic and microbial fertilization on wheat growth and yield. International Research Journal of Agricultural Science and Soil Science, 2: 149–154.
- Nautiyal, C. S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters,170:265270.
- O'Brien, T., Feder, N., McCully, M.E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59(2): 368-373.
- Olivera, M., Tejera, N., Iribarne, C., Ocana, A. and Lluch, C. (2004). Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiologia Plantarum, 121(3): 498-505. https://doi.org/10.1111/j.0031-9317.2004.00355.x
- Otvos, K., Pasternak, T.P., Miskolczi, P., Domoki, M., Dorjgotov, D., Szucs, A., Bottka, S., Dudits, D. and Feher, A. (2005). Nitric oxide is required for, and promotes auxin‐mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. The Plant Journal, 43(6): 849-860. https://doi.org/10.1111/j.1365-313X.2005.02494.x
- Scheible, W.R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M.K. and Stitt, M. (2004). Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology, 136(1): 2483-2499. https://doi.org/10.1104/pp.104.047019
- Shams, M., Ekinci, M., Ors, S., Turan, M., Agar, G., Kul, R. and Yildirim, E. (2019). Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants, 25: 1149-1161. https://doi.org/10.1007/s12298-019-00692-2
- Sharma, A., Singh, R.K., Singh, P., Vaishnav, A., Guo, D.J., Verma, K.K., Li, D.P., Song, X.P., Malviya, M.K., Khan, N., Lakshmanan, P. and Li, Y.R. (2021). Insights into the bacterial and nitric oxide-induced salt tolerance in sugarcane and their growth-promoting abilities. Microorganisms, 9(11): 2203. https://doi.org/10.3390/microorganisms9112203
- Siddiqui, M.H., Al-Whaibi, M.H. and Basalah, M.O. (2011). Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248: 447-455. https://doi.org/10.1007/s00709-010-0206-9
- Tahiri, A.I., Raklami, A., Bechtaoui, N., Anli, M., Boutasknit, A., Oufdou, K. and Meddich, A. (2022). Beneficial effects of plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and compost on lettuce (Lactuca sativa) growth under field conditions. Gesunde Pflanzen, 74: 219–235. https://doi.org/10.1007/s10343-021-00604-z
- Takahashi, S. and Yamasaki, H. (2002). Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Letters, 512: 145–148. https://doi.org/10.1016/S0014-5793(02)02244-5
- Vaishnav, A., Kumari, S., Jain, S., Varma, A., Tuteja, N. and Choudhary, D.K. (2016). PGPR‐mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. Journal of Basic Microbiology, 56(11): 1274-1288. https://doi.org/10.1002/jobm.201600188
- Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2): 571-586. https://doi.org/10.1023/A:1026037216893
- Wang, J., Qu, F., Liang, J., Yang, M. and Hu, X. (2022). Bacillus velezensis SX13 promoted cucumber growth and production by accelerating the absorption of nutrients and increasing plant photosynthetic metabolism. Scientia Horticulturae, 301: 111151. https://doi.org/10.1016/j.scienta.2022.111151
- Wang, Y. and Ruby, E.G. (2011). The roles of NO in microbial symbioses. Cellular Microbiology, 13(4): 518-526. https://doi.org/10.1111/j.1462-5822.2011.01576.x
- Zaidi, A., Ahmad, E., Khan, M.S., Saif, S. and Rizvi, A. (2015). Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Scientia Horticulturae, 193: 231-239. https://doi.org/10.1016/j.scienta.2015.07.020