Research Article
BibTex RIS Cite

Determining the most suitable empirical model for global solar radiation prediction in the lakes region

Year 2024, Volume: 8 Issue: 4, 904 - 912, 28.12.2024
https://doi.org/10.31015/jaefs.2024.4.20

Abstract

In this study, it was aimed to determine the most suitable model for predicting global solar radiation in the Lakes Region (Isparta, Burdur, Antalya). Through ATATEK-Solar software, a total of 15 models were tested, including 14 empirical models from the literature and a new artificial intelligence-supported model. Each model was analyzed with three different optimization algorithms (Nelder-Mead Simplex, Pattern Search, Simulated Annealing). In province-based evaluations, the Model 9 (RMSE: 0.1507, R²: 0.9990) for Isparta, and the Model 14 for Burdur and Antalya (RMSE: 0.1940, R²: 0.9992 and RMSE: 0.2218, R²: 0.9987, respectively) provided the most successful results. In regional analysis results, while the Model 5 (RMSE: 0.2626, R²: 0.9980) gave the lowest average error, the Model 13 (RMSE: 0.2649, R²: 0.9979, standard deviation: 0.0122) showed the highest consistency. These models were followed by the Model 6 (RMSE: 0.2646, R²: 0.9979, standard deviation: 0.0444). Although the Model 15 gave the best results in Burdur and Antalya, it had a high standard deviation value (0.2201) due to its low performance in Isparta. The characteristic features of the Lakes Region, including the presence of lake ecosystems, elevation differences, and the resulting microclimatic diversity, necessitate a regional approach in predicting global solar radiation. In this context, the Model 13 has been determined as the most suitable model that can be used throughout the region with its low error rate and high consistency. The obtained results can provide reliable predictions in evaluating the solar energy potential of the region and designing solar energy systems.

References

  • Almorox, J., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9–10), 1529–1535. https://doi.org/10.1016/j.enconman.2003.08.022
  • Almorox, J., Benito, M., & Hontoria, C. (2005). Estimation of monthly Angström-Prescott equation coefficients from measured daily data in Toledo, Spain. Renewable Energy, 30(6), 931–936. https://doi.org/10.1016/j.renene.2004.08.002
  • Ampratwum, D.B., Dorvlo, A.S.S. (1999). Estimation of solar radiation from the number of sunshine hours. Applied Energy 63: 161–7.
  • Angstrom, A. (1924). Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society, 50(210), 121–126. https://doi.org/10.1002/qj.49705021008
  • Bahel, V., Bakhsh, H., & Srinivasan, R. (1987). A correlation for estimation of global solar radiation. Energy, 12(2), 131–135. https://doi.org/10.1016/0360-5442(87)90117-4
  • Bristow, K. L., & Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 31(2), 159–166. https://doi.org/10.1016/0168-1923(84)90017-0
  • Coppolino, S. (1994). A new correlation between clearness index and relative sunshine. Renewable Energy, 4(4), 417–423. https://doi.org/10.1016/0960-1481(94)90049-3
  • Dogniaux, R., & Lemoine, M. (1983). Classification of radiation sites in terms of different indices of atmospheric transparency. In W. Palz (Ed.), Solar energy research and development in the European Community, series F (Vol. 2, pp. 151–163). Dordrecht: Reidel. https://doi.org/10.1007/978-94-009-7112-7_7
  • Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes (4th ed.). John Wiley & Sons. https://doi.org/10.1002/9781118671603
  • Elagib, N. A., & Mansell, M. G. (2000). New approaches for estimating global solar radiation across Sudan. Energy Conversion and Management, 41(5), 419–434. https://doi.org/10.1016/S0196-8904(99)00123-5
  • El-Metwally, M. (2005). Sunshine and global solar radiation estimation at different sites in Egypt. Journal of Atmospheric and Solar-Terrestrial Physics, 67(14), 1331–1342. https://doi.org/10.1016/j.jastp.2005.04.004
  • Ersan, R., & Külcü, R. (2024). Development of new models using empirical modeling of global solar radiation and its application in Usak City, Turkey. Tekirdağ Ziraat Fakültesi Dergisi, 21(4).
  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96–99. https://doi.org/10.13031/2013.26773
  • Hooke, R., & Jeeves, T. A. (1961). "Direct Search" solution of numerical and statistical problems. Journal of the ACM, 8(2), 212–229. https://doi.org/10.1145/321062.321069
  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
  • Külcü, R. (2015). Isparta ili için yeryüzüne ulaşan güneş ışınımının modellenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(1), 19–26.
  • Külcü, R. (2019). Advanced solar radiation models using logarithmic functions. Energy Science Journal, 15(3), 203–210.
  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308
  • Prescott, J. A. (1940). Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64(1), 114–118.
  • Süslü, A., & Külcü, R. (2024). Global güneş ışınımı tahmin modelleri için ATATEK-Solar yazılımının geliştirilmesi. Akademia Doğa ve İnsan Bilimleri Dergisi, 10(1), 62–73.
  • Türkiye Enerji Bakanlığı. (2024). Güneş enerjisi. T.C. Enerji ve Tabii Kaynaklar Bakanlığı. Erişim 17 Kasım 2024, https://enerji.gov.tr/bilgi-merkezi-enerji-gunes
Year 2024, Volume: 8 Issue: 4, 904 - 912, 28.12.2024
https://doi.org/10.31015/jaefs.2024.4.20

Abstract

References

  • Almorox, J., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9–10), 1529–1535. https://doi.org/10.1016/j.enconman.2003.08.022
  • Almorox, J., Benito, M., & Hontoria, C. (2005). Estimation of monthly Angström-Prescott equation coefficients from measured daily data in Toledo, Spain. Renewable Energy, 30(6), 931–936. https://doi.org/10.1016/j.renene.2004.08.002
  • Ampratwum, D.B., Dorvlo, A.S.S. (1999). Estimation of solar radiation from the number of sunshine hours. Applied Energy 63: 161–7.
  • Angstrom, A. (1924). Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society, 50(210), 121–126. https://doi.org/10.1002/qj.49705021008
  • Bahel, V., Bakhsh, H., & Srinivasan, R. (1987). A correlation for estimation of global solar radiation. Energy, 12(2), 131–135. https://doi.org/10.1016/0360-5442(87)90117-4
  • Bristow, K. L., & Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 31(2), 159–166. https://doi.org/10.1016/0168-1923(84)90017-0
  • Coppolino, S. (1994). A new correlation between clearness index and relative sunshine. Renewable Energy, 4(4), 417–423. https://doi.org/10.1016/0960-1481(94)90049-3
  • Dogniaux, R., & Lemoine, M. (1983). Classification of radiation sites in terms of different indices of atmospheric transparency. In W. Palz (Ed.), Solar energy research and development in the European Community, series F (Vol. 2, pp. 151–163). Dordrecht: Reidel. https://doi.org/10.1007/978-94-009-7112-7_7
  • Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes (4th ed.). John Wiley & Sons. https://doi.org/10.1002/9781118671603
  • Elagib, N. A., & Mansell, M. G. (2000). New approaches for estimating global solar radiation across Sudan. Energy Conversion and Management, 41(5), 419–434. https://doi.org/10.1016/S0196-8904(99)00123-5
  • El-Metwally, M. (2005). Sunshine and global solar radiation estimation at different sites in Egypt. Journal of Atmospheric and Solar-Terrestrial Physics, 67(14), 1331–1342. https://doi.org/10.1016/j.jastp.2005.04.004
  • Ersan, R., & Külcü, R. (2024). Development of new models using empirical modeling of global solar radiation and its application in Usak City, Turkey. Tekirdağ Ziraat Fakültesi Dergisi, 21(4).
  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96–99. https://doi.org/10.13031/2013.26773
  • Hooke, R., & Jeeves, T. A. (1961). "Direct Search" solution of numerical and statistical problems. Journal of the ACM, 8(2), 212–229. https://doi.org/10.1145/321062.321069
  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
  • Külcü, R. (2015). Isparta ili için yeryüzüne ulaşan güneş ışınımının modellenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(1), 19–26.
  • Külcü, R. (2019). Advanced solar radiation models using logarithmic functions. Energy Science Journal, 15(3), 203–210.
  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308
  • Prescott, J. A. (1940). Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64(1), 114–118.
  • Süslü, A., & Külcü, R. (2024). Global güneş ışınımı tahmin modelleri için ATATEK-Solar yazılımının geliştirilmesi. Akademia Doğa ve İnsan Bilimleri Dergisi, 10(1), 62–73.
  • Türkiye Enerji Bakanlığı. (2024). Güneş enerjisi. T.C. Enerji ve Tabii Kaynaklar Bakanlığı. Erişim 17 Kasım 2024, https://enerji.gov.tr/bilgi-merkezi-enerji-gunes
There are 21 citations in total.

Details

Primary Language English
Subjects Agricultural Energy Systems
Journal Section Research Articles
Authors

Ahmet Süslü 0000-0003-4016-589X

Early Pub Date December 26, 2024
Publication Date December 28, 2024
Submission Date November 17, 2024
Acceptance Date December 18, 2024
Published in Issue Year 2024 Volume: 8 Issue: 4

Cite

APA Süslü, A. (2024). Determining the most suitable empirical model for global solar radiation prediction in the lakes region. International Journal of Agriculture Environment and Food Sciences, 8(4), 904-912. https://doi.org/10.31015/jaefs.2024.4.20


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27