Research Article
BibTex RIS Cite

Characterization of PGPR from rhizospheric soil of some vegetable crops cultivated at Sylhet district of Bangladesh

Year 2025, Volume: 9 Issue: 1, 132 - 143, 17.03.2025
https://doi.org/10.31015/2025.1.16

Abstract

Plant Growth Promoting Rhizobacteria (PGPR) are rhizosphere-dwelling microorganisms which hold a great deal of potential for both plant growth stimulation and disease prevention. The characterization of PGPR will aid in the advancement and deployment of biocontrol agents. In this present work, rhizospheric soils were collected from several locations of Sylhet Agricultural University in order to obtain plant growth promoting rhizobacteria. Nineteen bacterial samples were extracted from a variety of fifteen distinct vegetable crops, viz. tomato, brinjal, beans, okra, cabbage, cauliflower, pumpkin, amaranth, malabar spinach, bitter gourd, ridge gourd, spiny gourd, sponge gourd, wax gourd, and snake gourd. These isolates were examined morphologically, biochemically, and screened for plant growth stimulating capability as well as their efficacy in combating the plant pathogen Fusarium oxysporum through antifungal activity. Among the isolates, only Lysinibacillus macroides (RB2), Lysinibacillus fusiformis (RB6) and Acinetobacter baumannii (RB15 and RB17) showed antifungal and growth promotion potentials. Therefore, the present study indicates that the vegetable rhizosphere contains potential rhizobacteria which could be utilized to enhance plant development and reduce disease incidence on vegetable crops.

Supporting Institution

University Grants Commission of Bangladesh, . The Ministry of Science and Technology (Most) of Bangladesh

Thanks

We gratefully acknowledge the department of microbiology and immunology, faculty of veterinary, animal, and biomedical sciences, Sylhet Agricultural University, Sylhet, for their laboratory assistance.

References

  • Abd El-Moaty, N. M., Khalil, H. M., Gomaa, H. H., Ismail, M. A., & El-Dougdoug, K. A. (2018). Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting. Middle East J. Appl. Sci, 8, 554-566.
  • Abdeljalil, N. B., Vallance, J., Gerbore, J., Bruez, E., Martins, G., Rey, P., & Daami-Remadi, M. (2016). Biocontrol of Rhizoctonia root rot in tomato and enhancement of plant growth using rhizobacteria naturally associated to tomato. J. Plant Pathol. Microbiol, 7(6), 356.
  • Agustiyani, D., Purwaningsih, S., Dewi, T. K., Nditasari, A., Nugroho, A. A., Sutisna, E., ... & Antonius, S. (2022, February). Characterization of PGPR isolated from rhizospheric soils of various plant and its effect on growth of radish (Raphanus sativus L.). In IOP Conference Series: Earth and Environmental Science (Vol. 976, No. 1, p. 012037). IOP Publishing.
  • Ahsan, N., & Shimizu, M. (2021). Lysinibacillus species: their potential as effective bioremediation, biostimulant, and biocontrol agents. Reviews in Agricultural Science, 9, 103-116.
  • Ali, S., Hameed, S., Shahid, M., Iqbal, M., Lazarovits, G., & Imran, A. (2020). Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research, 232, 126389.
  • Ashrafuzzaman, M., Hossen, F. A., Ismail, M. R., Hoque, A., Islam, M. Z., Shahidullah, S. M., & Meon, S. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8(7).
  • Attia, M. S., El-Sayyad, G. S., Abd Elkodous, M., & El-Batal, A. I. (2020). The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Scientia Horticulturae, 266, 109289.
  • Azad, M. J., Ali, M. S., Islam, M. R., Yeasmin, M., & Pk, K. H. (2014). Problem perceived by the farmers in vegetable cultivation. Journal of experimental bioscience, 5(2), 63-68..
  • Baliah, N. T., Pandiarajan, G., & Kumar, B. M. (2016). Isolation, identification and characterization of phosphate solubilizing bacteria from different crop soils of Srivilliputtur Taluk, Virudhunagar District, Tamil Nadu. Tropical Ecology, 57(3), 465-474.
  • Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140.
  • Bechtaoui, N., Raklami, A., Tahiri, A. I., Benidire, L., El Alaoui, A., Meddich, A., ... & Oufdou, K. (2019). Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biology open, 8(7), bio043968.
  • Bergey, D. H. (1994). Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins.
  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350.
  • Cappuccino, J. G., & Sherman, N. (2013). Microbiology: a laboratory manual. Pearson Higher Ed.
  • Cavalcante da Silva, M. J., Palmeira, S. F., Fortes, K., Nascimento, V. X., de Medeiros, A. S., Cavalcanti da Silva, S. J., ... & Sant'Ana, A. E. G. (2020). IAA production of indigenous isolate of plant growth promoting rhizobacteria in the presence of tryptophan. Australian Journal of Crop Science, 14(3), 537-544.
  • Chauhan, A., Saini, R., & Sharma, J. C. (2021). Plant growth promoting rhizobacteria and their biological properties for soil enrichment and growth promotion. Journal of Plant Nutrition, 45(2), 273-299.
  • Chen, X. H., Koumoutsi, A., Scholz, R., & Borriss, R. (2009). More than anticipated–production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. Journal of molecular microbiology and biotechnology, 16(1-2), 14-24.
  • Dash, N., Pahari, A., & Dangar, T. K. (2017). Functionalities of phosphate-solubilizing bacteria of rice rhizosphere: techniques and perspectives. Recent Advances in Applied Microbiology, 151-163.
  • Dias, A., Santos, S. D., Vasconcelos, V. D. S., Radl, V., Xavier, G. R., Rumjanek, N. G., & Ribeiro, R. L. (2013). Screening of plant growth promoting rhizobacteria for the development of vegetable crops inoculants. Afr J Microbiol Res, 7(19), 2087-2092.
  • Ehmann, A. (1977). The Van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A, 132(2), 267-276.
  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. evolution, 39(4), 783-791.
  • Goswami, D., Parmar, S., Vaghela, H., Dhandhukia, P., & Thakker, J. N. (2015). Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food & Agriculture, 1(1), 1000714.
  • Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture, 2(1), 1127500.
  • Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological research, 206, 131-140.
  • Grobelak, A., Napora, A., & Kacprzak, M. J. E. E. (2015). Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 84, 22-28.
  • Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 7(2), 096-102.
  • Hardiansyah, M. Y. H. M. Y. (2020). The Identification of Plant Growth Promoting Rhizobacteria from Thorny Bamboo Rhizosphere with 3% KOH Gram Test and Gram Staining Test. International Journal of Applied Biology, 4(2)), 7-17.
  • Hossain, M. M., & Sattar, M. A. (2002). Physical and chemical properties of some selected soils of Bangladesh. OnLine Journal of Biological Sciences (Pakistan), 2(2).
  • Huang, P., de-Bashan, L., Crocker, T., Kloepper, J. W., & Bashan, Y. (2017). Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biology and Fertility of Soils, 53, 199-208.
  • Jha, Y., & Mohamed, H. I. (2023). Inoculation with Lysinibacillus fusiformis strain YJ4 and Lysinibacillus sphaericus strain YJ5 alleviates the effects of cold stress in maize plants. Gesunde Pflanzen, 75(1), 77-95.
  • Jing, Y. D., He, Z. L., & Yang, X. E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8(3), 192-207.
  • Jyolsna, K. S., Bharathi, N., Ali, L. R., & Paari, K. A. (2021). Impact of Lysinibacillus macroides, a potential plant growth promoting rhizobacteria on growth, yield and nutritional value of tomato plant (Solanum lycopersicum L. F1 hybrid Sachriya). Plant Science Today, 8(2), 365-372.
  • Kalimuthu, R., Suresh, P., Varatharaju, G., Balasubramanian, N., Rajasekaran, K. M., & Shanmugaiah, V. (2019). Isolation and characterization of Indole acetic acid [IAA] producing tomato Rhizobacterium pseudomonas sp VSMKU4050 and its potential for plant growth promotion. International Journal of Current Microbiology and Applied Sciences, 8(06), 443-455.
  • Kenneth, O. C., Nwadibe, E. C., Kalu, A. U., & Unah, U. V. (2019). Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. Am J Agric Biol Sci, 14(35), 54.
  • Kesaulya, H., Zakaria, B., & Syaiful, S. A. (2015). Isolation and physiological characterization of PGPR from potato plant rhizosphere in medium land of Buru Island. Procedia Food Science, 3, 190-199.
  • Kumari, P., Meena, M., & Upadhyay, R. S. (2018). Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and agricultural biotechnology, 16, 155-162.
  • Kusumawati, D. I., Widawati, S., Lisdiyanti, P., & Sudiana, I. M. (2017, November). Isolation and screening for IAA production, nitrogen fixation, P-solubilization and cellulolytic activity of plant growth-promoting rhizobacteria from Imperata cylindrica Grasslands. In Proceedings The SATREPS Conference (Vol. 1, No. 1, pp. 125-133).
  • Leontidou, K., Genitsaris, S., Papadopoulou, A., Kamou, N., Bosmali, I., Matsi, T., ... & Mellidou, I. (2020). Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: Genomic characterisation and exploration of phyto-beneficial traits. Scientific reports, 10(1), 14857.
  • Li, M., Wang, J., Zhao, P., Chen, K., & Wu, L. (2020). Factors affecting the willingness of agricultural green production from the perspective of farmers' perceptions. Science of the Total Environment, 738, 140289.
  • Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224.
  • Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiologia Plantarum 1(2):142-146.
  • Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24, 3315-3335.
  • Manasa, K., Reddy, S., & Triveni, S. (2017). Characterization of potential PGPR and antagonistic activities of Rhizobium isolates from different rhizosphere soils. Journal of Pharmacognosy and Phytochemistry, 6(3), 51-54.
  • Marakana, T., Sharma, M., & Sangani, K. (2018). Isolation and characterization of halotolerant bacteria and it’s effects on wheat plant as PGPR. Pharma Innov. J, 7, 102-110.
  • Mazumdar, D., Saha, S. P., & Ghosh, S. (2018). Klebsiella pneumoniae rs26 as a potent PGPR isolated from chickpea (Cicer arietinum) rhizosphere. Pharm. Innovat. Int. J, 7, 56-62.
  • Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Harish, Tripathi, Y. N., ... & Upadhyay, R. S. (2020). PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 60(10), 828-861.
  • Mei, C., Chretien, R. L., Amaradasa, B. S., He, Y., Turner, A., & Lowman, S. (2021). Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse. Microorganisms, 9(9), 1935.
  • Meliani, A., Bensoltane, A., Benidire, L., & Oufdou, K. (2017). Plant growth-promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida. Research & Reviews: Journal of Botanical Sciences, 6(2), 16-24.
  • Mike-Anosike, E. E., Braide, W., & Adeleye, S. A. (2018). Studies on indole acetic acid (IAA) production by rhizobacteria and growth promoting potentials. International Journal of Advanced Research in Biological Sciences, 5(2), 133-140.
  • Mim, T. T., Sheikh, M. H., Shampa, R. A., Reza, M. S., & Islam, M. S. (2019, November). Leaves diseases detection of tomato using image processing. In 2019 8th international conference system modeling and advancement in research trends (SMART) (pp. 244-249). IEEE.
  • Moustaine, M., Elkahkahi, R., Benbouazza, A., Benkirane, R., & Achbani, E. H. (2017). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Environment, Agriculture and Biotechnology, 2(2), 238708.
  • Mujumdar, S., Bhoyar, J., Akkar, A., Hundekar, S., Agnihotri, N., Jaybhay, P., & Bhuyan, S. (2023). Acinetobacter: A versatile plant growth-promoting rhizobacteria (PGPR). In Plant-microbe interaction-recent advances in molecular and biochemical approaches (pp. 327-362). Academic Press.
  • Naureen, Z., Rehman, N. U., Hussain, H., Hussain, J., Gilani, S. A., Al Housni, S. K., ... & Harrasi, A. A. (2017). Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Frontiers in microbiology, 8, 1477.
  • Noumavo, P. A., Agbodjato, N. A., Gachomo, E. W., Salami, H. A., Baba-Moussa, F., Adjanohoun, A., ... & Baba-Moussa, L. (2015). Metabolic and biofungicidal properties of maize rhizobacteria for growth promotion and plant disease resistance. African Journal of Biotechnology, 14(9), 811-819.
  • Padmavathi, T., Dikshit, R., & Seshagiri, S. (2015). Effect of Rhizophagus spp. and plant growth-promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Brazilian Journal of Botany, 38, 273-280.
  • Paiter, A., Freitas, G., Pinto, L., Hass, L., Barreiros, M., Oliveira, A., & Grange, L. (2019). IAA production and phosphate solubilization performed by native rhizobacteria in western Paraná. Agronomy Science and Biotechnology, 5(2), 70-70.
  • Pantoja-Guerra, M., Burkett-Cadena, M., Cadena, J., Dunlap, C. A., & Ramírez, C. A. (2023). Lysinibacillus spp.: An IAA-producing endospore forming-bacteria that promotes plant growth. Antonie Van Leeuwenhoek, 116(7), 615-630.
  • Paramanandham, P., Rajkumari, J., Pattnaik, S., & Busi, S. (2017). Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to Plant Growth–Promoting Rhizobacteria. International Journal of Vegetable Science, 23(4), 294-303.
  • Passera, A., Rossato, M., Oliver, J. S., Battelli, G., Cosentino, E., Sage, J. M., ... & Casati, P. (2021). Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiological Research, 244, 126665.
  • Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and environmental microbiology, 68(8), 3795-3801.
  • Pellegrini, M., Ercole, C., Di Zio, C., Matteucci, F., Pace, L., & Del Gallo, M. (2020). In vitro and in planta antagonistic effects of plant growth-promoting rhizobacteria consortium against soilborne plant pathogens of Solanum tuberosum and Solanum lycopersicum. FEMS microbiology letters, 367(13), fnaa099.
  • Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362-370.
  • Pramanik, K., Mitra, S., Sarkar, A., & Maiti, T. K. (2018). Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of hazardous materials, 351, 317-329.
  • Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K. R., Zinjarde, S., ... & Chopade, B. A. (2011). Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6), 556-566.
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425.
  • Santosa, S., Purwanto, E., & Suranto, S. (2018, September). Sustainability of Organic Agriculture System by Plant Growth Promoting Rhizobacteria (PGPR). In International Conference on Science and Education and Technology 2018 (ISET 2018) (pp. 459-464). Atlantis Press.
  • Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. D. C., & Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), 475.
  • Sarbadhikary, S. B., & Mandal, N. C. (2017). Field application of two plant growth promoting rhizobacteria with potent antifungal properties. Rhizosphere, 3, 170-175.
  • Singh, R. K., Kumar, D. P., Solanki, M. K., Singh, P., Srivastva, A. K., Kumar, S., ... & Arora, D. K. (2013). Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B‐CM18. Journal of basic microbiology, 53(5), 451-460.
  • Singh, R., Kumar, A., Singh, M., & Pandey, K. D. (2019). Isolation and Characterization of Plant Growth Promoting Rhizobacteria From Momordica Charantia L. In PGPR amelioration in sustainable agriculture (pp. 217-238). Woodhead Publishing.
  • Singh, T. B., Sahai, V., Goyal, D., Prasad, M., Yadav, A., Shrivastav, P., ... & Dantu, P. K. (2020). Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Current Microbiology, 77, 3633-3642.
  • Skidmore, A. M., & Dickinson, C. H. (1976). Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Transactions of the British Mycological Society, 66(1), 57-64.
  • Somasegaran, P., & Hoben, H. J. (2012). Handbook for rhizobia: methods in legume-Rhizobium technology. Springer Science & Business Media.
  • Souchie, E. L., Azcón, R., Barea, J. M., Saggin-Júnior, O. J., & Silva, E. M. R. D. (2005). Phosphate solubilization in solid and liquid media by soil bacteria and fungi. Pesquisa Agropecuária Brasileira, 40, 1149-1152.
  • Tsegaye, Z., Gizaw, B., Tefera, G., Feleke, A., Chaniyalew, S., Alemu, T., & Assefa, F. (2019). Isolation and biochemical characterization of Plant Growth Promoting (PGP) bacteria colonizing the rhizosphere of Tef crop during the seedling stage. Journal of Plant Science and Phytopathology, 3(1), 013-027.
  • Vaikuntapu, P. R., Dutta, S., Samudrala, R. B., Rao, V. R., Kalam, S., & Podile, A. R. (2014). Preferential promotion of Lycopersicon esculentum (Tomato) growth by plant growth promoting bacteria associated with tomato. Indian journal of microbiology, 54, 403-412.
  • Vendan, R. T., Yu, Y. J., Lee, S. H., & Rhee, Y. H. (2010). Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. The Journal of Microbiology, 48, 559-565.
  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255, 571-586.
  • Yousef, N. M. 2018. Capability of plant growth-promoting rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions. European Journal of Biological Research 8(4):174-182.
Year 2025, Volume: 9 Issue: 1, 132 - 143, 17.03.2025
https://doi.org/10.31015/2025.1.16

Abstract

References

  • Abd El-Moaty, N. M., Khalil, H. M., Gomaa, H. H., Ismail, M. A., & El-Dougdoug, K. A. (2018). Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting. Middle East J. Appl. Sci, 8, 554-566.
  • Abdeljalil, N. B., Vallance, J., Gerbore, J., Bruez, E., Martins, G., Rey, P., & Daami-Remadi, M. (2016). Biocontrol of Rhizoctonia root rot in tomato and enhancement of plant growth using rhizobacteria naturally associated to tomato. J. Plant Pathol. Microbiol, 7(6), 356.
  • Agustiyani, D., Purwaningsih, S., Dewi, T. K., Nditasari, A., Nugroho, A. A., Sutisna, E., ... & Antonius, S. (2022, February). Characterization of PGPR isolated from rhizospheric soils of various plant and its effect on growth of radish (Raphanus sativus L.). In IOP Conference Series: Earth and Environmental Science (Vol. 976, No. 1, p. 012037). IOP Publishing.
  • Ahsan, N., & Shimizu, M. (2021). Lysinibacillus species: their potential as effective bioremediation, biostimulant, and biocontrol agents. Reviews in Agricultural Science, 9, 103-116.
  • Ali, S., Hameed, S., Shahid, M., Iqbal, M., Lazarovits, G., & Imran, A. (2020). Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research, 232, 126389.
  • Ashrafuzzaman, M., Hossen, F. A., Ismail, M. R., Hoque, A., Islam, M. Z., Shahidullah, S. M., & Meon, S. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8(7).
  • Attia, M. S., El-Sayyad, G. S., Abd Elkodous, M., & El-Batal, A. I. (2020). The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Scientia Horticulturae, 266, 109289.
  • Azad, M. J., Ali, M. S., Islam, M. R., Yeasmin, M., & Pk, K. H. (2014). Problem perceived by the farmers in vegetable cultivation. Journal of experimental bioscience, 5(2), 63-68..
  • Baliah, N. T., Pandiarajan, G., & Kumar, B. M. (2016). Isolation, identification and characterization of phosphate solubilizing bacteria from different crop soils of Srivilliputtur Taluk, Virudhunagar District, Tamil Nadu. Tropical Ecology, 57(3), 465-474.
  • Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140.
  • Bechtaoui, N., Raklami, A., Tahiri, A. I., Benidire, L., El Alaoui, A., Meddich, A., ... & Oufdou, K. (2019). Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biology open, 8(7), bio043968.
  • Bergey, D. H. (1994). Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins.
  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350.
  • Cappuccino, J. G., & Sherman, N. (2013). Microbiology: a laboratory manual. Pearson Higher Ed.
  • Cavalcante da Silva, M. J., Palmeira, S. F., Fortes, K., Nascimento, V. X., de Medeiros, A. S., Cavalcanti da Silva, S. J., ... & Sant'Ana, A. E. G. (2020). IAA production of indigenous isolate of plant growth promoting rhizobacteria in the presence of tryptophan. Australian Journal of Crop Science, 14(3), 537-544.
  • Chauhan, A., Saini, R., & Sharma, J. C. (2021). Plant growth promoting rhizobacteria and their biological properties for soil enrichment and growth promotion. Journal of Plant Nutrition, 45(2), 273-299.
  • Chen, X. H., Koumoutsi, A., Scholz, R., & Borriss, R. (2009). More than anticipated–production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. Journal of molecular microbiology and biotechnology, 16(1-2), 14-24.
  • Dash, N., Pahari, A., & Dangar, T. K. (2017). Functionalities of phosphate-solubilizing bacteria of rice rhizosphere: techniques and perspectives. Recent Advances in Applied Microbiology, 151-163.
  • Dias, A., Santos, S. D., Vasconcelos, V. D. S., Radl, V., Xavier, G. R., Rumjanek, N. G., & Ribeiro, R. L. (2013). Screening of plant growth promoting rhizobacteria for the development of vegetable crops inoculants. Afr J Microbiol Res, 7(19), 2087-2092.
  • Ehmann, A. (1977). The Van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A, 132(2), 267-276.
  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. evolution, 39(4), 783-791.
  • Goswami, D., Parmar, S., Vaghela, H., Dhandhukia, P., & Thakker, J. N. (2015). Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food & Agriculture, 1(1), 1000714.
  • Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture, 2(1), 1127500.
  • Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological research, 206, 131-140.
  • Grobelak, A., Napora, A., & Kacprzak, M. J. E. E. (2015). Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 84, 22-28.
  • Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 7(2), 096-102.
  • Hardiansyah, M. Y. H. M. Y. (2020). The Identification of Plant Growth Promoting Rhizobacteria from Thorny Bamboo Rhizosphere with 3% KOH Gram Test and Gram Staining Test. International Journal of Applied Biology, 4(2)), 7-17.
  • Hossain, M. M., & Sattar, M. A. (2002). Physical and chemical properties of some selected soils of Bangladesh. OnLine Journal of Biological Sciences (Pakistan), 2(2).
  • Huang, P., de-Bashan, L., Crocker, T., Kloepper, J. W., & Bashan, Y. (2017). Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biology and Fertility of Soils, 53, 199-208.
  • Jha, Y., & Mohamed, H. I. (2023). Inoculation with Lysinibacillus fusiformis strain YJ4 and Lysinibacillus sphaericus strain YJ5 alleviates the effects of cold stress in maize plants. Gesunde Pflanzen, 75(1), 77-95.
  • Jing, Y. D., He, Z. L., & Yang, X. E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8(3), 192-207.
  • Jyolsna, K. S., Bharathi, N., Ali, L. R., & Paari, K. A. (2021). Impact of Lysinibacillus macroides, a potential plant growth promoting rhizobacteria on growth, yield and nutritional value of tomato plant (Solanum lycopersicum L. F1 hybrid Sachriya). Plant Science Today, 8(2), 365-372.
  • Kalimuthu, R., Suresh, P., Varatharaju, G., Balasubramanian, N., Rajasekaran, K. M., & Shanmugaiah, V. (2019). Isolation and characterization of Indole acetic acid [IAA] producing tomato Rhizobacterium pseudomonas sp VSMKU4050 and its potential for plant growth promotion. International Journal of Current Microbiology and Applied Sciences, 8(06), 443-455.
  • Kenneth, O. C., Nwadibe, E. C., Kalu, A. U., & Unah, U. V. (2019). Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. Am J Agric Biol Sci, 14(35), 54.
  • Kesaulya, H., Zakaria, B., & Syaiful, S. A. (2015). Isolation and physiological characterization of PGPR from potato plant rhizosphere in medium land of Buru Island. Procedia Food Science, 3, 190-199.
  • Kumari, P., Meena, M., & Upadhyay, R. S. (2018). Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and agricultural biotechnology, 16, 155-162.
  • Kusumawati, D. I., Widawati, S., Lisdiyanti, P., & Sudiana, I. M. (2017, November). Isolation and screening for IAA production, nitrogen fixation, P-solubilization and cellulolytic activity of plant growth-promoting rhizobacteria from Imperata cylindrica Grasslands. In Proceedings The SATREPS Conference (Vol. 1, No. 1, pp. 125-133).
  • Leontidou, K., Genitsaris, S., Papadopoulou, A., Kamou, N., Bosmali, I., Matsi, T., ... & Mellidou, I. (2020). Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: Genomic characterisation and exploration of phyto-beneficial traits. Scientific reports, 10(1), 14857.
  • Li, M., Wang, J., Zhao, P., Chen, K., & Wu, L. (2020). Factors affecting the willingness of agricultural green production from the perspective of farmers' perceptions. Science of the Total Environment, 738, 140289.
  • Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224.
  • Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiologia Plantarum 1(2):142-146.
  • Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24, 3315-3335.
  • Manasa, K., Reddy, S., & Triveni, S. (2017). Characterization of potential PGPR and antagonistic activities of Rhizobium isolates from different rhizosphere soils. Journal of Pharmacognosy and Phytochemistry, 6(3), 51-54.
  • Marakana, T., Sharma, M., & Sangani, K. (2018). Isolation and characterization of halotolerant bacteria and it’s effects on wheat plant as PGPR. Pharma Innov. J, 7, 102-110.
  • Mazumdar, D., Saha, S. P., & Ghosh, S. (2018). Klebsiella pneumoniae rs26 as a potent PGPR isolated from chickpea (Cicer arietinum) rhizosphere. Pharm. Innovat. Int. J, 7, 56-62.
  • Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Harish, Tripathi, Y. N., ... & Upadhyay, R. S. (2020). PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 60(10), 828-861.
  • Mei, C., Chretien, R. L., Amaradasa, B. S., He, Y., Turner, A., & Lowman, S. (2021). Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse. Microorganisms, 9(9), 1935.
  • Meliani, A., Bensoltane, A., Benidire, L., & Oufdou, K. (2017). Plant growth-promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida. Research & Reviews: Journal of Botanical Sciences, 6(2), 16-24.
  • Mike-Anosike, E. E., Braide, W., & Adeleye, S. A. (2018). Studies on indole acetic acid (IAA) production by rhizobacteria and growth promoting potentials. International Journal of Advanced Research in Biological Sciences, 5(2), 133-140.
  • Mim, T. T., Sheikh, M. H., Shampa, R. A., Reza, M. S., & Islam, M. S. (2019, November). Leaves diseases detection of tomato using image processing. In 2019 8th international conference system modeling and advancement in research trends (SMART) (pp. 244-249). IEEE.
  • Moustaine, M., Elkahkahi, R., Benbouazza, A., Benkirane, R., & Achbani, E. H. (2017). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Environment, Agriculture and Biotechnology, 2(2), 238708.
  • Mujumdar, S., Bhoyar, J., Akkar, A., Hundekar, S., Agnihotri, N., Jaybhay, P., & Bhuyan, S. (2023). Acinetobacter: A versatile plant growth-promoting rhizobacteria (PGPR). In Plant-microbe interaction-recent advances in molecular and biochemical approaches (pp. 327-362). Academic Press.
  • Naureen, Z., Rehman, N. U., Hussain, H., Hussain, J., Gilani, S. A., Al Housni, S. K., ... & Harrasi, A. A. (2017). Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Frontiers in microbiology, 8, 1477.
  • Noumavo, P. A., Agbodjato, N. A., Gachomo, E. W., Salami, H. A., Baba-Moussa, F., Adjanohoun, A., ... & Baba-Moussa, L. (2015). Metabolic and biofungicidal properties of maize rhizobacteria for growth promotion and plant disease resistance. African Journal of Biotechnology, 14(9), 811-819.
  • Padmavathi, T., Dikshit, R., & Seshagiri, S. (2015). Effect of Rhizophagus spp. and plant growth-promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Brazilian Journal of Botany, 38, 273-280.
  • Paiter, A., Freitas, G., Pinto, L., Hass, L., Barreiros, M., Oliveira, A., & Grange, L. (2019). IAA production and phosphate solubilization performed by native rhizobacteria in western Paraná. Agronomy Science and Biotechnology, 5(2), 70-70.
  • Pantoja-Guerra, M., Burkett-Cadena, M., Cadena, J., Dunlap, C. A., & Ramírez, C. A. (2023). Lysinibacillus spp.: An IAA-producing endospore forming-bacteria that promotes plant growth. Antonie Van Leeuwenhoek, 116(7), 615-630.
  • Paramanandham, P., Rajkumari, J., Pattnaik, S., & Busi, S. (2017). Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to Plant Growth–Promoting Rhizobacteria. International Journal of Vegetable Science, 23(4), 294-303.
  • Passera, A., Rossato, M., Oliver, J. S., Battelli, G., Cosentino, E., Sage, J. M., ... & Casati, P. (2021). Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiological Research, 244, 126665.
  • Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and environmental microbiology, 68(8), 3795-3801.
  • Pellegrini, M., Ercole, C., Di Zio, C., Matteucci, F., Pace, L., & Del Gallo, M. (2020). In vitro and in planta antagonistic effects of plant growth-promoting rhizobacteria consortium against soilborne plant pathogens of Solanum tuberosum and Solanum lycopersicum. FEMS microbiology letters, 367(13), fnaa099.
  • Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362-370.
  • Pramanik, K., Mitra, S., Sarkar, A., & Maiti, T. K. (2018). Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of hazardous materials, 351, 317-329.
  • Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K. R., Zinjarde, S., ... & Chopade, B. A. (2011). Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6), 556-566.
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425.
  • Santosa, S., Purwanto, E., & Suranto, S. (2018, September). Sustainability of Organic Agriculture System by Plant Growth Promoting Rhizobacteria (PGPR). In International Conference on Science and Education and Technology 2018 (ISET 2018) (pp. 459-464). Atlantis Press.
  • Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. D. C., & Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), 475.
  • Sarbadhikary, S. B., & Mandal, N. C. (2017). Field application of two plant growth promoting rhizobacteria with potent antifungal properties. Rhizosphere, 3, 170-175.
  • Singh, R. K., Kumar, D. P., Solanki, M. K., Singh, P., Srivastva, A. K., Kumar, S., ... & Arora, D. K. (2013). Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B‐CM18. Journal of basic microbiology, 53(5), 451-460.
  • Singh, R., Kumar, A., Singh, M., & Pandey, K. D. (2019). Isolation and Characterization of Plant Growth Promoting Rhizobacteria From Momordica Charantia L. In PGPR amelioration in sustainable agriculture (pp. 217-238). Woodhead Publishing.
  • Singh, T. B., Sahai, V., Goyal, D., Prasad, M., Yadav, A., Shrivastav, P., ... & Dantu, P. K. (2020). Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Current Microbiology, 77, 3633-3642.
  • Skidmore, A. M., & Dickinson, C. H. (1976). Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Transactions of the British Mycological Society, 66(1), 57-64.
  • Somasegaran, P., & Hoben, H. J. (2012). Handbook for rhizobia: methods in legume-Rhizobium technology. Springer Science & Business Media.
  • Souchie, E. L., Azcón, R., Barea, J. M., Saggin-Júnior, O. J., & Silva, E. M. R. D. (2005). Phosphate solubilization in solid and liquid media by soil bacteria and fungi. Pesquisa Agropecuária Brasileira, 40, 1149-1152.
  • Tsegaye, Z., Gizaw, B., Tefera, G., Feleke, A., Chaniyalew, S., Alemu, T., & Assefa, F. (2019). Isolation and biochemical characterization of Plant Growth Promoting (PGP) bacteria colonizing the rhizosphere of Tef crop during the seedling stage. Journal of Plant Science and Phytopathology, 3(1), 013-027.
  • Vaikuntapu, P. R., Dutta, S., Samudrala, R. B., Rao, V. R., Kalam, S., & Podile, A. R. (2014). Preferential promotion of Lycopersicon esculentum (Tomato) growth by plant growth promoting bacteria associated with tomato. Indian journal of microbiology, 54, 403-412.
  • Vendan, R. T., Yu, Y. J., Lee, S. H., & Rhee, Y. H. (2010). Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. The Journal of Microbiology, 48, 559-565.
  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255, 571-586.
  • Yousef, N. M. 2018. Capability of plant growth-promoting rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions. European Journal of Biological Research 8(4):174-182.
There are 79 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Research Articles
Authors

Saima Sadia Jui This is me 0009-0009-4420-3946

Rakibul Hasan 0000-0002-1713-9936

Israt Jahan Ema This is me 0000-0003-4041-3849

Hasan Tareq Nasim This is me 0009-0000-0090-1819

Md. Monirul Islam This is me 0009-0005-9479-0676

Publication Date March 17, 2025
Submission Date September 25, 2024
Acceptance Date March 9, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Jui, S. S., Hasan, R., Ema, I. J., Nasim, H. T., et al. (2025). Characterization of PGPR from rhizospheric soil of some vegetable crops cultivated at Sylhet district of Bangladesh. International Journal of Agriculture Environment and Food Sciences, 9(1), 132-143. https://doi.org/10.31015/2025.1.16


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27