Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 90 - 97, 17.03.2025
https://doi.org/10.31015/2025.1.11

Abstract

References

  • Abideen, Z.; Koyro, H.W.; Huchzermeyer, B.; Ansari, R.; Zulfiqar, F.; Gul, B.J.P.B.,2020. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biol., 22, 259–266.
  • Akgül, G. (2017). Biyokömür: üretimi ve kullanım alanları. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(4), 485-499.
  • Akkeçeci, Ş., & Özkan, Ç. Ö. (2022). Organik tarimda yeşil gübre uygulamasinin önemi ve sürdürülebilirliği. Adyutayam Dergisi, 10(2), 161-174.
  • Ayaz, M.; Feizienė, D.; Tilvikienė, V.; Akhtar, K.; Stulpinaitė, U.; Iqbal, R. 2021. Biochar role in the sustainability of agriculture and environment. Sustainability, 13 (3), 1330.
  • CCAP, 2024. https://www.ccap.ac.uk/catalogue/strain-254-1 Access date: 26.01.2024.
  • Cheah, W.Y.; Show, P.L.; Chang, J.S.; Ling, T.C.; Juan, J.C., 2015. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource technology, 184, 190-201.
  • Fahad, S.; Bajwa, A.; Nazir, U.; Anjum, S.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al.,2017. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci., 8, 1147.
  • González-Pérez, B. K.; Rivas-Castillo, A. M.; Valdez-Calderón, A.; Gayosso-Morales, M. A, 2022. Microalgae as biostimulants: A new approach in agriculture. World Journal of Microbiology and Biotechnology, 38(1), 4.
  • Hesampour, R.; Bastani, A.; Hassani, M.; Failla, S.; Daria Vaverková, M., 2021. Energy-Environmental Joint Life Cycle Assessment and Data Envelopment Analysis (Lca+ Dea) and Cumulative Exergy Demand Evaluation for Canned Apple Production. Available at SSRN 3919674. http://dx.doi.org/10.2139/ssrn.3919674.
  • IPCC, 2013. Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, in: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Cambridge University Press, Cambridge, UK and NY, USA pp. 1535.
  • Ippolito, J.A.; Laird, D.A.; Busscher, W.J., 2012. Environmental Benefits of Biochar, J. of Environ. Qual., 41 (4), 967-972.
  • Kambo, H.S.; Dutta, A., 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties, and applications. Renew. Sustain. Energy Rev. , 45, 359–378.
  • Lehmann, J.; Joseph, S., 2015. Biochar for Environmental Management: An Introduction, Lehmann J, Joseph, S. (Eds.). Biochar for Environmental Management: Science and Technology, Earthscan, pp. 1-12
  • Matovic, D., 2011. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy J. 36, 2011–2016.
  • Park, S.; Croteau, P.; Boering, K.A.; Etheridge, D.M.; Ferretti, D.; Fraser, P.J.; Kim, K.R.; Krummel, P.B.; Langenfelds, R.L.; Van Ommen, T.D.; Steele, L.P.; Trudinger, C.M., 2012. Trends and Seasonal Cycles in the Isotopic Composition of Nitrous Oxide Since 1940, Nat. Geosci, 5, 261–265.
  • SAG, 2024. http://sagdb.uni-goettingen.de/index.php. Access date: 26.01.2024.
  • Slade, R.; Bauen, A. (2013). Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy, 53, 29–38. https:// doi.org/10.1016/j.biombioe.2012.12.019.
  • Spokas, K.A.; Reicosky, D.C., 2009. Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production, Annals of Environmental Science, 3 (1), 4.
  • Suganya, T.; Varman, M.; Masjuki, H.H.; Renganathan, S., 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909-941.
  • Sundquist, E.T., 1993. The global carbon dioxide budget. Science, 259(5097), 934-941.
  • Tolman, W.B., 2010. Binding and activation of N2O at transition-metal centers: recent mechanistic insights. Angew. Chem. Int. Ed. 49, 1018–1024.
  • Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U.; Mehmood, S.; Rizwan, M. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop Sci. 2021, 42, 770–781.
  • UTEX, 2024. https://utex.org/collections/living-algal-strains Access date: 26.01.2024.
  • Uysal, Ö., 2022. Treatment of rose oil processing wastewater with Acutodesmus obliquus and investigation of the production potential of biodiesel, biochar and biofertilizer from the microalgal mass, energy analysis and water footprint of the processes. Isparta University of Applied Sciences, Institute of Postgraduate Education, Doctoral thesis, 131 p.
  • Van Zwieten, L.; Singh, B.P.; Kimber, S.W.L.; Murphy, D.V.; Macdonald, L.M.; Rust, J.; Morris, S., 2014. An Incubation Study Investigating the Mechanisms That Impact N2O Flux from Soil Following Biochar Application, Agriculture, Ecosystems & Environment, 191, 53-62.
  • Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van der Velde, M.; Diafas, I., 2010. Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions, European Commission, Joint Research Centre, 24099, 162.
  • Yu, K.L.; Show, P.L.; Ong, H.C.; Ling, T.C.; Lan, J.C.W.; Chen, W.H.; Chang, J.S., 2017. Microalgae from wastewater treatment to biochar–feedstock preparation and conversion technologies. Energy conversion and management, 150, 1-13.
  • Zhang, Y.; Wang, J.; Feng, Y., 2021. The effects of biochar addition on soil physicochemical properties: A review. Catena, 202, 105284.

Effect of different pyrolysis temperatures on biofertilizer properties of microalgal biochar and energy analysis

Year 2025, Volume: 9 Issue: 1, 90 - 97, 17.03.2025
https://doi.org/10.31015/2025.1.11

Abstract

In this study, Chlorella sp. (Cs), Chlorella vulgaris (Cv), Neochloris conjuncta (Nc), Botryoococcus braunii (Bb), and Scenedesmus obliquus (So) microalgae strains were cultivated in channel type ponds. The microalgal biomasses obtained were divided into two groups (350 and 600 °C). The microalgal biomasses in the first group were biocharized at two different pyrolysis temperatures, while those in the second group were untreated crude microalgal biomasses. As a result of the energy input-output analysis of both groups of microalgal biomasses, the highest net energy gain was calculated in the un-treated Cv strain with 52.41, while the lowest value was calculated in the biocharification process of So and Bb strains at 600°C with 13.03. In all groups, the energy efficiency, energy ratio, and net energy gain of the Cv strain were found to be higher than other microalgae strains. When the bio-fertilizer, biostimulant data, and energy data are evaluated together, it’s concluded that it’s most appropriate to prefer the Cv microalgae strain.

References

  • Abideen, Z.; Koyro, H.W.; Huchzermeyer, B.; Ansari, R.; Zulfiqar, F.; Gul, B.J.P.B.,2020. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biol., 22, 259–266.
  • Akgül, G. (2017). Biyokömür: üretimi ve kullanım alanları. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(4), 485-499.
  • Akkeçeci, Ş., & Özkan, Ç. Ö. (2022). Organik tarimda yeşil gübre uygulamasinin önemi ve sürdürülebilirliği. Adyutayam Dergisi, 10(2), 161-174.
  • Ayaz, M.; Feizienė, D.; Tilvikienė, V.; Akhtar, K.; Stulpinaitė, U.; Iqbal, R. 2021. Biochar role in the sustainability of agriculture and environment. Sustainability, 13 (3), 1330.
  • CCAP, 2024. https://www.ccap.ac.uk/catalogue/strain-254-1 Access date: 26.01.2024.
  • Cheah, W.Y.; Show, P.L.; Chang, J.S.; Ling, T.C.; Juan, J.C., 2015. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource technology, 184, 190-201.
  • Fahad, S.; Bajwa, A.; Nazir, U.; Anjum, S.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al.,2017. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci., 8, 1147.
  • González-Pérez, B. K.; Rivas-Castillo, A. M.; Valdez-Calderón, A.; Gayosso-Morales, M. A, 2022. Microalgae as biostimulants: A new approach in agriculture. World Journal of Microbiology and Biotechnology, 38(1), 4.
  • Hesampour, R.; Bastani, A.; Hassani, M.; Failla, S.; Daria Vaverková, M., 2021. Energy-Environmental Joint Life Cycle Assessment and Data Envelopment Analysis (Lca+ Dea) and Cumulative Exergy Demand Evaluation for Canned Apple Production. Available at SSRN 3919674. http://dx.doi.org/10.2139/ssrn.3919674.
  • IPCC, 2013. Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, in: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Cambridge University Press, Cambridge, UK and NY, USA pp. 1535.
  • Ippolito, J.A.; Laird, D.A.; Busscher, W.J., 2012. Environmental Benefits of Biochar, J. of Environ. Qual., 41 (4), 967-972.
  • Kambo, H.S.; Dutta, A., 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties, and applications. Renew. Sustain. Energy Rev. , 45, 359–378.
  • Lehmann, J.; Joseph, S., 2015. Biochar for Environmental Management: An Introduction, Lehmann J, Joseph, S. (Eds.). Biochar for Environmental Management: Science and Technology, Earthscan, pp. 1-12
  • Matovic, D., 2011. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy J. 36, 2011–2016.
  • Park, S.; Croteau, P.; Boering, K.A.; Etheridge, D.M.; Ferretti, D.; Fraser, P.J.; Kim, K.R.; Krummel, P.B.; Langenfelds, R.L.; Van Ommen, T.D.; Steele, L.P.; Trudinger, C.M., 2012. Trends and Seasonal Cycles in the Isotopic Composition of Nitrous Oxide Since 1940, Nat. Geosci, 5, 261–265.
  • SAG, 2024. http://sagdb.uni-goettingen.de/index.php. Access date: 26.01.2024.
  • Slade, R.; Bauen, A. (2013). Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy, 53, 29–38. https:// doi.org/10.1016/j.biombioe.2012.12.019.
  • Spokas, K.A.; Reicosky, D.C., 2009. Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production, Annals of Environmental Science, 3 (1), 4.
  • Suganya, T.; Varman, M.; Masjuki, H.H.; Renganathan, S., 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909-941.
  • Sundquist, E.T., 1993. The global carbon dioxide budget. Science, 259(5097), 934-941.
  • Tolman, W.B., 2010. Binding and activation of N2O at transition-metal centers: recent mechanistic insights. Angew. Chem. Int. Ed. 49, 1018–1024.
  • Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U.; Mehmood, S.; Rizwan, M. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop Sci. 2021, 42, 770–781.
  • UTEX, 2024. https://utex.org/collections/living-algal-strains Access date: 26.01.2024.
  • Uysal, Ö., 2022. Treatment of rose oil processing wastewater with Acutodesmus obliquus and investigation of the production potential of biodiesel, biochar and biofertilizer from the microalgal mass, energy analysis and water footprint of the processes. Isparta University of Applied Sciences, Institute of Postgraduate Education, Doctoral thesis, 131 p.
  • Van Zwieten, L.; Singh, B.P.; Kimber, S.W.L.; Murphy, D.V.; Macdonald, L.M.; Rust, J.; Morris, S., 2014. An Incubation Study Investigating the Mechanisms That Impact N2O Flux from Soil Following Biochar Application, Agriculture, Ecosystems & Environment, 191, 53-62.
  • Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van der Velde, M.; Diafas, I., 2010. Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions, European Commission, Joint Research Centre, 24099, 162.
  • Yu, K.L.; Show, P.L.; Ong, H.C.; Ling, T.C.; Lan, J.C.W.; Chen, W.H.; Chang, J.S., 2017. Microalgae from wastewater treatment to biochar–feedstock preparation and conversion technologies. Energy conversion and management, 150, 1-13.
  • Zhang, Y.; Wang, J.; Feng, Y., 2021. The effects of biochar addition on soil physicochemical properties: A review. Catena, 202, 105284.
There are 28 citations in total.

Details

Primary Language English
Subjects Agricultural Energy Systems
Journal Section Research Articles
Authors

Önder Uysal 0000-0002-8019-5260

Publication Date March 17, 2025
Submission Date December 8, 2024
Acceptance Date March 5, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Uysal, Ö. (2025). Effect of different pyrolysis temperatures on biofertilizer properties of microalgal biochar and energy analysis. International Journal of Agriculture Environment and Food Sciences, 9(1), 90-97. https://doi.org/10.31015/2025.1.11


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27