Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 210 - 220, 17.03.2025
https://doi.org/10.31015/2025.1.23

Abstract

References

  • Afroz Bakht, M., Geesi, M. H., Riadi, Y., Imran, M., Imtiyaz Ali, M., Ahsan, M. J., & Ajmal, N. (2019). Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi Journal of Biological Sciences, 26(5), 1043–1052. https://doi.org/10.1016/J.SJBS.2018.07.013
  • Bagheri, N., Al Lawati, H. A. J., & Hassanzadeh, J. (2021). Simultaneous determination of total phenolic acids and total flavonoids in tea and honey samples using an integrated lab on a chip device. Food Chemistry, 342, 128338. https://doi.org/10.1016/J.FOODCHEM.2020.128338
  • Berbegal, C., Ferrer, S., Polo, L., Pardo, I., García-Esparza, M. J., Andrés, L., Álvarez, I., & Lizama, V. (2023). Diversity of Indigenous Saccharomyces cerevisiae Yeast Strains in Cabernet Sauvignon Fermentations from Utiel-Requena Region (Spain) as a Resource to Improve Wine Distinctiveness. Fermentation, 9(7), 654. https://doi.org/10.3390/FERMENTATION9070654/S1
  • Borah, A., Gogoi, M., Goswami, R., & Hazarika, S. (2024). Ultrasound assisted hydrotropic extraction of polyphenols from green tea leaves in aqueous media. Industrial Crops and Products, 209, 117986. https://doi.org/10.1016/J.INDCROP.2023.117986
  • Both, S., Chemat, F., & Strube, J. (2014). Extraction of polyphenols from black tea – Conventional and ultrasound assisted extraction. Ultrasonics Sonochemistry, 21(3), 1030–1034. https://doi.org/10.1016/J.ULTSONCH.2013.11.005
  • Burin, V. M., Gomes, T. M., Caliari, V., Rosier, J. P., & Bordignon Luiz, M. T. (2015). Establishment of influence the nitrogen content in musts and volatile profile of white wines associated to chemometric tools. Microchemical Journal, 122, 20–28. https://doi.org/10.1016/J.MICROC.2015.03.011
  • Chen, J., Lin, B., Zheng, F. J., Fang, X. C., Ren, E. F., Wu, F. F., Verma, K. K., & Chen, G. L. (2023). Characterization of the Pure Black Tea Wine Fermentation Process by Electronic Nose and Tongue-Based Techniques with Nutritional Characteristics. ACS Omega, 8(13), 12538–12547. https://doi.org/10.1021/ACSOMEGA.3C00862/ASSET/IMAGES/LARGE/AO3C00862_0009.JPEG
  • Compendium of International Methods of Wine and Must Analysis | OIV. (n.d.). Retrieved December 27, 2024, from https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis
  • Elmas, C., Gezer Doğu Akdeniz Üniversitesi, C., Bilimleri Fakültesi, S., ve Diyetetik Bölümü, B., & Kıbrıs Türk Cumhuriyeti, K. (2019). Çay Bitkisinin (Camellia sinensis) Bileşimi ve Sağlık Etkileri. Akademik Gıda, 17(3), 417–428. https://doi.org/10.24323/AKADEMIK-GIDA.647733
  • Erol, N. T., Sarı, F., & Velioglu, Y. S. (2010). Farklı Sınıf Türk Siyah Çaylarının Polifenol ve Alkaloid İçerikleri İle Antioksidan Aktivitesi (İngilizce). The Journal of Food, 35(3), 161–168. https://dergipark.org.tr/en/pub/gida/issue/6879/92067
  • Fairchild, M. D. (2018). The colors of wine. International Journal of Wine Research, 10(1), 13–31. https://doi.org/10.2147/IJWR.S161891
  • Gómez Gallego, M. A., Sánchez-Palomo, E., Hermosín-Gutiérrez, I., & González Viñas, M. A. (2013). Polyphenolic composition of Spanish red wines made from Spanish Vitis vinifera L. red grape varieties in danger of extinction. European Food Research and Technology, 236(4), 647–658. https://doi.org/10.1007/S00217-013-1920-2/TABLES/8
  • Huang, F., Yan, Y. H., Yao, Q. B., Li, M. N., Ma, J. W., Zhang, Z. H., Huang, Y. Y., & Jia, X. Z. (2024). Different Treatments on the Physicochemical Properties and Volatile Components of Tea Wine During Storage Period. Molecules 2024, Vol. 29, Page 5946, 29(24), 5946. https://doi.org/10.3390/MOLECULES29245946
  • Huang, Y. Y., Liang, Z. C., Lin, X. Z., He, Z. G., Ren, X. Y., Li, W. X., & Molnár, I. (2021). Fungal community diversity and fermentation characteristics in regional varieties of traditional fermentation starters for Hong Qu glutinous rice wine. Food Research International, 141, 110146. https://doi.org/10.1016/J.FOODRES.2021.110146
  • Ifrim, I.-L., Suceveanu, E.-M., & Ștefănescu, I.-A. (2024). THE IMPACT OF ULTRASOUND TREATMENT ON THE QUALITY OF DIFFERENT WINE VARIETIES. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 25(3), 301–311. https://doi.org/10.29081/CHIBA.2024.608
  • Jiang, B., & Zhang, Z. (2010). Volatile Compounds of Young Wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay Varieties Grown in the Loess Plateau Region of China. Molecules 2010, Vol. 15, Pages 9184-9196, 15(12), 9184–9196. https://doi.org/10.3390/MOLECULES15129184
  • Joshi, V. K., & Kumar, V. (2017). Influence of different sugar sources, nitrogen sources and inocula on the quality characteristics of apple tea wine. Journal of the Institute of Brewing, 123(2), 268–276. https://doi.org/10.1002/JIB.417
  • Kumar, V., Joshi, V. K., Thakur, N. S., Sharma, N., & Gupta, R. K. (2020). Effect of Artificial Ageing Using Different Wood Chips on Physico-chemical, Sensory and Antimicrobial Properties of Apple Tea Wine. Brazilian Archives of Biology and Technology, 63, e20180413. https://doi.org/10.1590/1678-4324-2020180413
  • Liang, Z., Zhang, P., Ma, W., Zeng, X.-A., & Fang, Z. (2023). Physicochemical Properties, Antioxidant Activities, Volatile and Phenolic Profiles of Black Tea-Flavored Chardonnay Wine Processed by Ultrasound. https://doi.org/10.2139/SSRN.4424948
  • Lin, L., Li, K., Hua, Y., Liao, S., Chen, J., Tan, L., Yang, Y., Sun, B., Tang, Q., & Xu, W. (2024a). Dynamic changes of anthocyanins during ‘Ziyan’ tea wine processing. Food Chemistry: X, 24, 101799. https://doi.org/10.1016/J.FOCHX.2024.101799
  • Lin, L., Li, K., Hua, Y., Liao, S., Chen, J., Tan, L., Yang, Y., Sun, B., Tang, Q., & Xu, W. (2024b). Dynamic changes of anthocyanins during ‘Ziyan’ tea wine processing. Food Chemistry: X, 24, 101799. https://doi.org/10.1016/J.FOCHX.2024.101799
  • Mangas, R., González, M. R., Martín, P., & Rodríguez-Nogales, J. M. (2023). Impact of glucose oxidase treatment in high sugar and pH musts on volatile composition of white wines. LWT, 184, 114975. https://doi.org/10.1016/J.LWT.2023.114975
  • Martínez-Pérez, M. P., Bautista-Ortín, A. B., Pérez-Porras, P., Jurado, R., & Gómez-Plaza, E. (2020). A New Approach to the Reduction of Alcohol Content in Red Wines: The Use of High-Power Ultrasounds. Foods 2020, Vol. 9, Page 726, 9(6), 726. https://doi.org/10.3390/FOODS9060726
  • Neto, F. S. P. P., de Castilhos, M. B. M., Telis, V. R. N., & Telis-Romero, J. (2015). Effect of ethanol, dry extract and reducing sugars on density and viscosity of Brazilian red wines. Journal of the Science of Food and Agriculture, 95(7), 1421–1427. https://doi.org/10.1002/JSFA.6835
  • Ozsefil, I. C., & Ziylan-Yavas, A. (2023). Green approach for polyphenol extraction from waste tea biomass: Single and hybrid application of conventional and ultrasound-assisted extraction. Environmental Research, 235, 116703. https://doi.org/10.1016/J.ENVRES.2023.116703
  • Patel, P., Herbst-Johnstone, M., Lee, S. A., Gardner, R. C., Weaver, R., Nicolau, L., & Kilmartin, P. A. (2010). Influence of juice pressing conditions on polyphenols, antioxidants, and varietal aroma of sauvignon blanc microferments. Journal of Agricultural and Food Chemistry, 58(12), 7280–7288. https://doi.org/10.1021/JF100200E/ASSET/IMAGES/LARGE/JF-2010-00200E_0001.JPEG
  • Puertas, B., Guerrero, R. F., Jurado, M. S., Jimenez, M. J., & Cantos-Villar, E. (2008). Evaluation of Alternative Winemaking Processes for Red Wine Color Enhancement. Http://Dx.Doi.Org/10.1177/1082013208095686, 14(5_suppl), 21–27. https://doi.org/10.1177/1082013208095686
  • Qiao, L., Ye, X., Sun, Y., Ying, J., Shen, Y., & Chen, J. (2013). Sonochemical effects on free phenolic acids under ultrasound treatment in a model system. Ultrasonics Sonochemistry, 20(4), 1017–1025. https://doi.org/10.1016/J.ULTSONCH.2012.12.007
  • Raghunath, S., & Mallikarjunan, K. (2020). Optimization of ultrasound-assisted extraction of cold-brewed black tea using response surface methodology. Journal of Food Process Engineering, 43(11), e13540. https://doi.org/10.1111/JFPE.13540
  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Handbook of Enology, The Chemistry of Wine: Stabilization and Treatments: Second Edition. Handbook of Enology, The Chemistry of Wine: Stabilization and Treatments: Second Edition, 2, 1–441. https://doi.org/10.1002/0470010398
  • Šilarová, P., Česlová, L., & Meloun, M. (2017). Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation. Food Chemistry, 237, 471–480. https://doi.org/10.1016/J.FOODCHEM.2017.05.133
  • Stevanato, R., Fabris, S., & Momo, F. (2004). New enzymatic method for the determination of total phenolic content in tea and wine. Journal of Agricultural and Food Chemistry, 52(20), 6287–6293. https://doi.org/10.1021/JF049898S/ASSET/IMAGES/LARGE/JF049898SF00006.JPEG
  • Szövényi, Á. P., Sólyom-Leskó, A., Szabó, A., Nagy, B., Varga, Z., & Nyitrainé Sárdy, D. Á. (2024). Influence of Plant Protein Fining Agents on the Phenolic Composition of Organic Grape Musts. Fermentation 2024, Vol. 10, Page 642, 10(12), 642. https://doi.org/10.3390/FERMENTATION10120642
  • Valero-Cases, E., Nuncio-Jáuregui, N., & Frutos, M. J. (2017). Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices. Journal of Agricultural and Food Chemistry, 65(31), 6488–6496. https://doi.org/10.1021/ACS.JAFC.6B04854/SUPPL_FILE/JF6B04854_SI_001.PDF
  • Wang, Q., Liu, K. Y., Zhang, Q., An, J. S., Xie, Z. Z., Chen, Z., Li, C. P., Zhang, J. H., Xu, B., & Li, R. Y. (2023). Optimisation of clarification process of glutinous rice tea wine, and its antioxidant activity. International Food Research Journal, 30(1), 205–215. https://doi.org/10.47836/IFRJ.30.1.17
  • Wu, F., Lin, B., Chen, J., Zheng, F., Fang, X., Luo, L., Chen, H., Verma, K. K., & Chen, G. (2024). Characteristic Aroma Screening among Green Tea Varieties and Electronic Sensory Evaluation of Green Tea Wine. Fermentation 2024, Vol. 10, Page 449, 10(9), 449. https://doi.org/10.3390/FERMENTATION10090449
  • Wu, Z. L., Ondruschka, B., & Cravotto, G. (2008). Degradation of phenol under combined irradiation of microwaves and ultrasound. Environmental Science and Technology, 42(21), 8083–8087. https://doi.org/10.1021/ES8013375/ASSET/IMAGES/LARGE/ES-2008-013375_0008.JPEG
  • Xie, Q., Tang, Y., Wu, X., Luo, Q., Zhang, W., Liu, H., Fang, Y., Yue, X., & Ju, Y. (2023). Combined ultrasound and low temperature pretreatment improve the content of anthocyanins, phenols and volatile substance of Merlot red wine. Ultrasonics Sonochemistry, 100, 106636. https://doi.org/10.1016/J.ULTSONCH.2023.106636
  • Xu, W., Wang, X., Jia, W., Wen, B., Liao, S., Zhao, Y., Tang, Q., Li, K., Hua, Y., Yang, Y., Bouphun, T., & Zou, Y. (2023). Dynamic changes in the major chemical and volatile components during the “Ziyan” tea wine processing. LWT, 186, 115273. https://doi.org/10.1016/J.LWT.2023.115273
  • Xu, W., Zhu, Y., Lin, L., Tunyaluk, B., & Li, P. (2024). Dynamic changes in volatile components during dark tea wine processing. LWT, 194, 115783. https://doi.org/10.1016/J.LWT.2024.115783
  • Yusoff, I. M., Mat Taher, Z., Rahmat, Z., & Chua, L. S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157, 111268. https://doi.org/10.1016/J.FOODRES.2022.111268

Impact of high-intensity ultrasound on phenolic content and quality of black tea wine

Year 2025, Volume: 9 Issue: 1, 210 - 220, 17.03.2025
https://doi.org/10.31015/2025.1.23

Abstract

Tea is the most popular non-alcoholic beverage in Turkiye and worldwide. Black tea, a product of tea leaves fermentation, is the most consumed form of tea in Turkiye. Although a significant amount of tea is produced and consumed globally, there are limited alternative products developed in this field apart from traditional black tea. The objective of this study was to produce tea wine with a high phenolic content from the highly popular and widely consumed black tea in Türkiye. The study aimed to evaluate the influence of ultrasound treatment on the physicochemical properties and overall quality of tea wine, with a particular focus on its impact on phenolic content. The results indicated that ultrasound treatment significantly affected physicochemical properties of tea wine such as total acidity, volatile acidity, total soluble solids, reducing sugar (p<0.05). Ultrasound treatment after brewing increased the total phenolic content (TPC) of tea infusions by 49%. The TPC levels of the samples decreased after fermentation but no significant change occurred in TPC levels duration of two months aging. The color parameters of tea wine were also affected from ultrasound treatment, fermentation process and aging. The L* value of tea wines significantly decreased to 66.41 in samples treated with 50% ultrasound for 8 minutes. Ultrasound treatment was found to influence sensory attributes, with increased amplitude and duration having a negative impact on taste. While there is limited research in the literature on tea-flavored, wine-based beverages, also known as tea wine, our project seeks to produce tea wine using a standardized process. We employed ultrasound, a new food preservation technique, to create an alcoholic drink with high phenolic content from brewed black tea, suitable for year-round production. It is expected that the findings highlighted the potential of tea in the production of diverse products, contributing to the expansion of tea consumption into new areas.

Supporting Institution

This study was supported by the Scientific and Technological Research Council of Türkiye (TUBITAK) (Application No. 1919B012307455).

References

  • Afroz Bakht, M., Geesi, M. H., Riadi, Y., Imran, M., Imtiyaz Ali, M., Ahsan, M. J., & Ajmal, N. (2019). Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi Journal of Biological Sciences, 26(5), 1043–1052. https://doi.org/10.1016/J.SJBS.2018.07.013
  • Bagheri, N., Al Lawati, H. A. J., & Hassanzadeh, J. (2021). Simultaneous determination of total phenolic acids and total flavonoids in tea and honey samples using an integrated lab on a chip device. Food Chemistry, 342, 128338. https://doi.org/10.1016/J.FOODCHEM.2020.128338
  • Berbegal, C., Ferrer, S., Polo, L., Pardo, I., García-Esparza, M. J., Andrés, L., Álvarez, I., & Lizama, V. (2023). Diversity of Indigenous Saccharomyces cerevisiae Yeast Strains in Cabernet Sauvignon Fermentations from Utiel-Requena Region (Spain) as a Resource to Improve Wine Distinctiveness. Fermentation, 9(7), 654. https://doi.org/10.3390/FERMENTATION9070654/S1
  • Borah, A., Gogoi, M., Goswami, R., & Hazarika, S. (2024). Ultrasound assisted hydrotropic extraction of polyphenols from green tea leaves in aqueous media. Industrial Crops and Products, 209, 117986. https://doi.org/10.1016/J.INDCROP.2023.117986
  • Both, S., Chemat, F., & Strube, J. (2014). Extraction of polyphenols from black tea – Conventional and ultrasound assisted extraction. Ultrasonics Sonochemistry, 21(3), 1030–1034. https://doi.org/10.1016/J.ULTSONCH.2013.11.005
  • Burin, V. M., Gomes, T. M., Caliari, V., Rosier, J. P., & Bordignon Luiz, M. T. (2015). Establishment of influence the nitrogen content in musts and volatile profile of white wines associated to chemometric tools. Microchemical Journal, 122, 20–28. https://doi.org/10.1016/J.MICROC.2015.03.011
  • Chen, J., Lin, B., Zheng, F. J., Fang, X. C., Ren, E. F., Wu, F. F., Verma, K. K., & Chen, G. L. (2023). Characterization of the Pure Black Tea Wine Fermentation Process by Electronic Nose and Tongue-Based Techniques with Nutritional Characteristics. ACS Omega, 8(13), 12538–12547. https://doi.org/10.1021/ACSOMEGA.3C00862/ASSET/IMAGES/LARGE/AO3C00862_0009.JPEG
  • Compendium of International Methods of Wine and Must Analysis | OIV. (n.d.). Retrieved December 27, 2024, from https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis
  • Elmas, C., Gezer Doğu Akdeniz Üniversitesi, C., Bilimleri Fakültesi, S., ve Diyetetik Bölümü, B., & Kıbrıs Türk Cumhuriyeti, K. (2019). Çay Bitkisinin (Camellia sinensis) Bileşimi ve Sağlık Etkileri. Akademik Gıda, 17(3), 417–428. https://doi.org/10.24323/AKADEMIK-GIDA.647733
  • Erol, N. T., Sarı, F., & Velioglu, Y. S. (2010). Farklı Sınıf Türk Siyah Çaylarının Polifenol ve Alkaloid İçerikleri İle Antioksidan Aktivitesi (İngilizce). The Journal of Food, 35(3), 161–168. https://dergipark.org.tr/en/pub/gida/issue/6879/92067
  • Fairchild, M. D. (2018). The colors of wine. International Journal of Wine Research, 10(1), 13–31. https://doi.org/10.2147/IJWR.S161891
  • Gómez Gallego, M. A., Sánchez-Palomo, E., Hermosín-Gutiérrez, I., & González Viñas, M. A. (2013). Polyphenolic composition of Spanish red wines made from Spanish Vitis vinifera L. red grape varieties in danger of extinction. European Food Research and Technology, 236(4), 647–658. https://doi.org/10.1007/S00217-013-1920-2/TABLES/8
  • Huang, F., Yan, Y. H., Yao, Q. B., Li, M. N., Ma, J. W., Zhang, Z. H., Huang, Y. Y., & Jia, X. Z. (2024). Different Treatments on the Physicochemical Properties and Volatile Components of Tea Wine During Storage Period. Molecules 2024, Vol. 29, Page 5946, 29(24), 5946. https://doi.org/10.3390/MOLECULES29245946
  • Huang, Y. Y., Liang, Z. C., Lin, X. Z., He, Z. G., Ren, X. Y., Li, W. X., & Molnár, I. (2021). Fungal community diversity and fermentation characteristics in regional varieties of traditional fermentation starters for Hong Qu glutinous rice wine. Food Research International, 141, 110146. https://doi.org/10.1016/J.FOODRES.2021.110146
  • Ifrim, I.-L., Suceveanu, E.-M., & Ștefănescu, I.-A. (2024). THE IMPACT OF ULTRASOUND TREATMENT ON THE QUALITY OF DIFFERENT WINE VARIETIES. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 25(3), 301–311. https://doi.org/10.29081/CHIBA.2024.608
  • Jiang, B., & Zhang, Z. (2010). Volatile Compounds of Young Wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay Varieties Grown in the Loess Plateau Region of China. Molecules 2010, Vol. 15, Pages 9184-9196, 15(12), 9184–9196. https://doi.org/10.3390/MOLECULES15129184
  • Joshi, V. K., & Kumar, V. (2017). Influence of different sugar sources, nitrogen sources and inocula on the quality characteristics of apple tea wine. Journal of the Institute of Brewing, 123(2), 268–276. https://doi.org/10.1002/JIB.417
  • Kumar, V., Joshi, V. K., Thakur, N. S., Sharma, N., & Gupta, R. K. (2020). Effect of Artificial Ageing Using Different Wood Chips on Physico-chemical, Sensory and Antimicrobial Properties of Apple Tea Wine. Brazilian Archives of Biology and Technology, 63, e20180413. https://doi.org/10.1590/1678-4324-2020180413
  • Liang, Z., Zhang, P., Ma, W., Zeng, X.-A., & Fang, Z. (2023). Physicochemical Properties, Antioxidant Activities, Volatile and Phenolic Profiles of Black Tea-Flavored Chardonnay Wine Processed by Ultrasound. https://doi.org/10.2139/SSRN.4424948
  • Lin, L., Li, K., Hua, Y., Liao, S., Chen, J., Tan, L., Yang, Y., Sun, B., Tang, Q., & Xu, W. (2024a). Dynamic changes of anthocyanins during ‘Ziyan’ tea wine processing. Food Chemistry: X, 24, 101799. https://doi.org/10.1016/J.FOCHX.2024.101799
  • Lin, L., Li, K., Hua, Y., Liao, S., Chen, J., Tan, L., Yang, Y., Sun, B., Tang, Q., & Xu, W. (2024b). Dynamic changes of anthocyanins during ‘Ziyan’ tea wine processing. Food Chemistry: X, 24, 101799. https://doi.org/10.1016/J.FOCHX.2024.101799
  • Mangas, R., González, M. R., Martín, P., & Rodríguez-Nogales, J. M. (2023). Impact of glucose oxidase treatment in high sugar and pH musts on volatile composition of white wines. LWT, 184, 114975. https://doi.org/10.1016/J.LWT.2023.114975
  • Martínez-Pérez, M. P., Bautista-Ortín, A. B., Pérez-Porras, P., Jurado, R., & Gómez-Plaza, E. (2020). A New Approach to the Reduction of Alcohol Content in Red Wines: The Use of High-Power Ultrasounds. Foods 2020, Vol. 9, Page 726, 9(6), 726. https://doi.org/10.3390/FOODS9060726
  • Neto, F. S. P. P., de Castilhos, M. B. M., Telis, V. R. N., & Telis-Romero, J. (2015). Effect of ethanol, dry extract and reducing sugars on density and viscosity of Brazilian red wines. Journal of the Science of Food and Agriculture, 95(7), 1421–1427. https://doi.org/10.1002/JSFA.6835
  • Ozsefil, I. C., & Ziylan-Yavas, A. (2023). Green approach for polyphenol extraction from waste tea biomass: Single and hybrid application of conventional and ultrasound-assisted extraction. Environmental Research, 235, 116703. https://doi.org/10.1016/J.ENVRES.2023.116703
  • Patel, P., Herbst-Johnstone, M., Lee, S. A., Gardner, R. C., Weaver, R., Nicolau, L., & Kilmartin, P. A. (2010). Influence of juice pressing conditions on polyphenols, antioxidants, and varietal aroma of sauvignon blanc microferments. Journal of Agricultural and Food Chemistry, 58(12), 7280–7288. https://doi.org/10.1021/JF100200E/ASSET/IMAGES/LARGE/JF-2010-00200E_0001.JPEG
  • Puertas, B., Guerrero, R. F., Jurado, M. S., Jimenez, M. J., & Cantos-Villar, E. (2008). Evaluation of Alternative Winemaking Processes for Red Wine Color Enhancement. Http://Dx.Doi.Org/10.1177/1082013208095686, 14(5_suppl), 21–27. https://doi.org/10.1177/1082013208095686
  • Qiao, L., Ye, X., Sun, Y., Ying, J., Shen, Y., & Chen, J. (2013). Sonochemical effects on free phenolic acids under ultrasound treatment in a model system. Ultrasonics Sonochemistry, 20(4), 1017–1025. https://doi.org/10.1016/J.ULTSONCH.2012.12.007
  • Raghunath, S., & Mallikarjunan, K. (2020). Optimization of ultrasound-assisted extraction of cold-brewed black tea using response surface methodology. Journal of Food Process Engineering, 43(11), e13540. https://doi.org/10.1111/JFPE.13540
  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Handbook of Enology, The Chemistry of Wine: Stabilization and Treatments: Second Edition. Handbook of Enology, The Chemistry of Wine: Stabilization and Treatments: Second Edition, 2, 1–441. https://doi.org/10.1002/0470010398
  • Šilarová, P., Česlová, L., & Meloun, M. (2017). Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation. Food Chemistry, 237, 471–480. https://doi.org/10.1016/J.FOODCHEM.2017.05.133
  • Stevanato, R., Fabris, S., & Momo, F. (2004). New enzymatic method for the determination of total phenolic content in tea and wine. Journal of Agricultural and Food Chemistry, 52(20), 6287–6293. https://doi.org/10.1021/JF049898S/ASSET/IMAGES/LARGE/JF049898SF00006.JPEG
  • Szövényi, Á. P., Sólyom-Leskó, A., Szabó, A., Nagy, B., Varga, Z., & Nyitrainé Sárdy, D. Á. (2024). Influence of Plant Protein Fining Agents on the Phenolic Composition of Organic Grape Musts. Fermentation 2024, Vol. 10, Page 642, 10(12), 642. https://doi.org/10.3390/FERMENTATION10120642
  • Valero-Cases, E., Nuncio-Jáuregui, N., & Frutos, M. J. (2017). Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices. Journal of Agricultural and Food Chemistry, 65(31), 6488–6496. https://doi.org/10.1021/ACS.JAFC.6B04854/SUPPL_FILE/JF6B04854_SI_001.PDF
  • Wang, Q., Liu, K. Y., Zhang, Q., An, J. S., Xie, Z. Z., Chen, Z., Li, C. P., Zhang, J. H., Xu, B., & Li, R. Y. (2023). Optimisation of clarification process of glutinous rice tea wine, and its antioxidant activity. International Food Research Journal, 30(1), 205–215. https://doi.org/10.47836/IFRJ.30.1.17
  • Wu, F., Lin, B., Chen, J., Zheng, F., Fang, X., Luo, L., Chen, H., Verma, K. K., & Chen, G. (2024). Characteristic Aroma Screening among Green Tea Varieties and Electronic Sensory Evaluation of Green Tea Wine. Fermentation 2024, Vol. 10, Page 449, 10(9), 449. https://doi.org/10.3390/FERMENTATION10090449
  • Wu, Z. L., Ondruschka, B., & Cravotto, G. (2008). Degradation of phenol under combined irradiation of microwaves and ultrasound. Environmental Science and Technology, 42(21), 8083–8087. https://doi.org/10.1021/ES8013375/ASSET/IMAGES/LARGE/ES-2008-013375_0008.JPEG
  • Xie, Q., Tang, Y., Wu, X., Luo, Q., Zhang, W., Liu, H., Fang, Y., Yue, X., & Ju, Y. (2023). Combined ultrasound and low temperature pretreatment improve the content of anthocyanins, phenols and volatile substance of Merlot red wine. Ultrasonics Sonochemistry, 100, 106636. https://doi.org/10.1016/J.ULTSONCH.2023.106636
  • Xu, W., Wang, X., Jia, W., Wen, B., Liao, S., Zhao, Y., Tang, Q., Li, K., Hua, Y., Yang, Y., Bouphun, T., & Zou, Y. (2023). Dynamic changes in the major chemical and volatile components during the “Ziyan” tea wine processing. LWT, 186, 115273. https://doi.org/10.1016/J.LWT.2023.115273
  • Xu, W., Zhu, Y., Lin, L., Tunyaluk, B., & Li, P. (2024). Dynamic changes in volatile components during dark tea wine processing. LWT, 194, 115783. https://doi.org/10.1016/J.LWT.2024.115783
  • Yusoff, I. M., Mat Taher, Z., Rahmat, Z., & Chua, L. S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157, 111268. https://doi.org/10.1016/J.FOODRES.2022.111268
There are 41 citations in total.

Details

Primary Language English
Subjects Fermentation Technology
Journal Section Research Articles
Authors

Suzan Uzun 0000-0001-5554-6906

Hüseyin Özgür Uzun 0009-0007-8463-608X

Publication Date March 17, 2025
Submission Date January 11, 2025
Acceptance Date March 12, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Uzun, S., & Uzun, H. Ö. (2025). Impact of high-intensity ultrasound on phenolic content and quality of black tea wine. International Journal of Agriculture Environment and Food Sciences, 9(1), 210-220. https://doi.org/10.31015/2025.1.23


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27