Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 261 - 271, 26.06.2025
https://doi.org/10.31015/2025.2.1

Abstract

References

  • Abdelhady, S. A., El-Azm, N. A. I. A., & El-Kafafi, E. S. H. (2017). Effect of deficit irrigation levels and NPK fertilization rates on tomato growth, yield and fruits quality. Middle East Journal of Agriculture Research, 6(3), 587-604.
  • Agbemafle, R., Owusu-Sekyere, J., Bart-Plange, A., & Otchere, J. (2014). Effect of deficit irrigation and storage on Physicochemical quality of tomato (Lycopersicon esculentum Mill. var. Pechtomech). Food Science and Quality Management, 34(10).
  • Agbna, G. H., Dongli, S., Zhipeng, L., Elshaikh, N. A., Guangcheng, S., & Timm, L. C. (2017). Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae, 222, 90-101. http://dx.doi.org/10.1016/j.scienta.2017.05.004
  • Alemayehu, Y. A., Steyn, J. M., & Annandale, J. G. (2009). FAO-type crop factor determination for irrigation scheduling of hot pepper (Capsicum annuum L.) cultivars. South African Journal of Plant and Soil, 26(3), 186-194. https://doi.org/10.1080/02571862.2009.10639953
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  • Alves Souza, S., Higino Vieira, J., Bispo dos Santos Farias, D., da Silva, G. H., & Cabral Aleman, C. (2020). Impact of irrigation frequency and planting density on bean’s morpho-physiological and productive traits. Water, 12(9), 2468. DOI: 10.3390/w12092468
  • Arfanuzzaman, M., & Rahman, A. A. (2017). Sustainable water demand management in the face of rapid urbanization and ground water depletion for social–ecological resilience building. Global ecology and Conservation, 10, 9-22.
  • Biel, C., Camprubí, A., Lovato, P. E., & Calvet, C. (2021). On-farm reduced irrigation and fertilizer doses, and arbuscular mycorrhizal fungal inoculation improve water productivity in tomato production. Scientia Horticulturae, 288, 110337. https://doi.org/10.1016/j.scienta.2021.110337
  • Biswas, S. K., Akanda, A. R., Rahman, M. S., & Hossain, M. A. (2016). Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant, Soil and Environment, 61(3), 97-102. DOI: 10.17221/804/2014-PSE
  • Boltana, S. M., Bekele, D. W., Ukumo, T. Y., & Lohani, T. K. (2023). Evaluation of irrigation scheduling to maximize tomato production using comparative assessment of soil moisture and evapotranspiration in restricted irrigated regions. Cogent Food & Agriculture, 9(1), 2214428. https://doi.org/10.1080/23311932.2023.2214428
  • Buttaro, D., Santamaria, P., Signore, A., Cantore, V., Boari, F., Montesano, F. F., & Parente, A. (2015). Irrigation management of greenhouse tomato and cucumber using tensiometer: Effects on yield, quality and water use. Agriculture and agricultural science procedia, 4, 440-444. https://doi.org/10.1016/j.aaspro.2015.03.050
  • Chowdhury, N. T. (2010). Water management in Bangladesh: an analytical review. Water policy, 12(1), 32-51. https://doi.org/10.2166/wp.2009.112
  • Colimba-Limaico, J. E., Zubelzu-Minguez, S., & Rodríguez-Sinobas, L. (2022). Optimal irrigation scheduling for greenhouse tomato crop (Solanum lycopersicum L.) in Ecuador. Agronomy, 12(5), 1020. https://doi.org/10.3390/ agronomy12051020
  • De Azevedo, P. V., de Souza, C. B., da Silva, B. B., & da Silva, V. P. (2007). Water requirements of pineapple crop grown in a tropical environment, Brazil. Agricultural water management, 88(1-3), 201-208. DOI: 10.1016/j.agwat.2006.10.021
  • Deka, B., Bhagawati, M., & Dutta, M. (2023). Effect of drip, fertigation and plastic mulching on growth and yield of cauliflower. Scientist, 4(4), 238-244. https://doi.org/10.5281/zenodo.7816669
  • Derib, S. D., Descheemaeker, K., Haileslassie, A., & Amede, T. (2011). Irrigation water productivity as affected by water management in a small-scale irrigation scheme in the Blue Nile basin, Ethiopia. Experimental agriculture, 47(S1), 39-55. doi:10.1017/S0014479710000839
  • Eshete, D. G., Sinshaw, B. G., & Legese, K. G. (2020). Critical review on improving irrigation water use efficiency: Advances, challenges, and opportunities in the Ethiopia context. Water-Energy Nexus, 3, 143-154. https://doi.org/10.1016/j.wen.2020.09.001
  • Ewaid, S. H., Abed, S. A., & Al-Ansari, N. (2019). Crop water requirements and irrigation schedules for some major crops in Southern Iraq. Water, 11(4), 756. DOI: 10.3390/w11040756
  • FAO Irrigation and Drainage Paper. 2006.
  • Fara, S. J., Delazari, F. T., Gomes, R. S., Araújo, W. L., & da Silva, D. J. H. (2019). Stomata opening and productiveness response of fresh market tomato under different irrigation intervals. Scientia Horticulturae, 255, 86-95. https://doi.org/10.1016/j.scienta.2019.05.025
  • Farooque, A. A., Afzaal, H., Abbas, F., Bos, M., Maqsood, J., Wang, X., & Hussain, N. (2022). Forecasting daily evapotranspiration using artificial neural networks for sustainable irrigation scheduling. Irrigation Science, 1-15. DOI: 10.1007/s00271-021-00751-1
  • Ganjegunte, G. K., Sheng, Z., & Clark, J. A. (2012). Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater. Applied Water Science, 2, 119-125. DOI: 10.1007/s13201-012-0032-7
  • Gatahi, D. M. (2020). Challenges and opportunities in tomato production chain and sustainable standards. International Journal of Horticultural Science and Technology, 7(3), 235-262. DOI: 10.22059/ijhst.2020.300818.361
  • Hao, L. I. U., Duan, A. W., LI, F. S., Sun, J. S., Wang, Y. C., & Sun, C. T. (2013). Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China Plain. Journal of Integrative Agriculture, 12(3), 520-531.
  • Her, Y., Morgan, K. T., & Wang, Q. (2019). Excel-Based Computational Template for Irrigation Scheduling Using Dual Crop Coefficients. The Journal of Extension, 57(1), 3. https://doi.org/10.34068/ joe.57.01.03
  • Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of experimental botany, 55(407), 2427-2436.
  • Junk, W. J., An, S., Finlayson, C. M., Gopal, B., Květ, J., Mitchell, S. A., ... & Robarts, R. D. (2013). Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic sciences, 75, 151-167. DOI: 10.1007/s00027-012-0278-z
  • Karim, M. R., Rahman, M. S., & Alam, M. S. (2009). Profitability of summer BARI hybrid tomato cultivation in Jessore district of Bangladesh. Journal of Agriculture & Rural Development, 73-79.
  • Kuscu, H., Turhan, A., Ozmen, N., Aydinol, P., & Demir, A. O. (2014). Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Horticulture, Environment, and Biotechnology, 55, 103-114. DOI 10.1007/s13580-014-0180-9
  • Li, Y., Sun, Y., Liao, S., Zou, G., Zhao, T., Chen, Y., ... & Zhang, L. (2017). Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agricultural Water Management, 186, 139-146.
  • Linker, R. (2021). Stochastic model-based optimization of irrigation scheduling. Agricultural Water Management, 243, 106480. https://doi.org/10.1016/j.agwat.2020.106480
  • Liu, H., Li, H., Ning, H., Zhang, X., Li, S., Pang, J., ... & Sun, J. (2019). Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agricultural Water Management, 226, 105787. DOI: 10.1016/j.agwat.2019.105787
  • López Ordaz, A., Trejo López, C., Ramírez Ayala, C., Peña Valdivia, C. B., Tijerina Chávez, L., & Carrillo Salazar, J. A. (2011). Irrigation technique to increase the eficiency of water use in tomato. Revista mexicana de ciencias agrícolas, 2(4), 475-488.
  • Mahendran, S., & Bandara, D. C. (2000). Effects of soil moisture stress at different growth stages on vitamin C, capsaicin and β-carotene contents of chilli (Capsicum annuum L.) fruits and their impact on yield. Tropical Agricultural Research, 12, 95-106.
  • Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7(3), 975-992.
  • Marino, S., Aria, M., Basso, B., Leone, A. P., & Alvino, A. (2014). Use of soil and vegetation spectroradiometry to investigate crop water use efficiency of a drip irrigated tomato. European Journal of Agronomy, 59, 67-77. http://dx.doi.org/10.1016/j.eja.2014.05.012
  • Mohammad, F. S., Al-Ghobari, H. M., & El Marazky, M. S. A. (2013). Adoption of an intelligent irrigation scheduling technique and its effect on water use efficiency for tomato crops in arid regions. Australian Journal of Crop Science, 7(3), 305-313.
  • Mushtaq, R., Sharma, M. K., Ahmad, L., Krishna, B., Mushtaq, K., & Mir, J. I. (2020). Crop water requirement estimation using pan evaporimeter for high density apple plantation system in Kashmir region of India. Journal of Agrometeorology, 22(1), 86-88.
  • Naor, A., Naschitz, S., Peres, M., & Gal, Y. (2008). Responses of apple fruit size to tree water status and crop load. Tree Physiology, 28(8), 1255-1261. https://doi.org/10.1093/treephys/28.8.1255
  • Nouri, H., Glenn, E. P., Beecham, S., Chavoshi Boroujeni, S., Sutton, P., Alaghmand, S., ... & Nagler, P. (2016). Comparing three approaches of evapotranspiration estimation in mixed urban vegetation: Field-based, remote sensing-based and observational-based methods. Remote Sensing, 8(6), 492. DOI:10.3390/rs8060492
  • Oke, A. M., Osilaechuu, A. P., Aremu, T. E., & Ojediran, J. O. (2020, February). Effect of drip irrigation regime on plant height and stem girth of tomato (Lycopersicon esculentum Mill). In IOP Conference Series: Earth and Environmental Science, 445, 012016. DOI:10.1088/1755-1315/445/1/012016
  • Pardossi, A., & Incrocci, L. (2011). Traditional and new approaches to irrigation scheduling in vegetable crops. HortTechnology, 21(3), 309-313.
  • Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural water management, 147, 4-20. https://doi.org/10.1016/j.agwat.2014.07.031
  • Rebouças, M. D. O., Azevedo, B. M. D., Araújo, T. V. V. D., Vasconcelos, D. V. D., & Fernandes, C. N. V. (2017). Irrigation frequency on economic performance and productivity of tomato in the coast of Ceará, Brazil. Revista Caatinga, 30, 971-979. DOI: 10.1590/1983-21252017v30n418rc
  • Sezen, S. M., Celikel, G., Yazar, A., Tekin, S., & Kapur, B. (2010). Effect of irrigation management on yield and quality of tomatoes grown in different soilless media in a glasshouse. Journal of Scientific Research and Essays, 5(1), 41–48.
  • Simić, D., Pejić, B., Bekavac, G., Mačkić, K., Vojnov, B., Bajić, I., & Sikora, V. (2023). Effect of different ET-based irrigation scheduling on grain yield and water use efficiency of drip irrigated maize. Agriculture, 13(10), 1994. https://doi.org/10.3390/agriculture13101994
  • Sivakumar, R., & Srividhya, S. (2016). Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Advances in Horticultural Science, 30, 3-11. DOI: 10.13128/AHS-18696
  • Wu, Y., Yan, S., Fan, J., Zhang, F., Xiang, Y., Zheng, J., & Guo, J. (2021). Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae, 275, 109710. DOI: 10.1016/j.scienta.2020.109710
  • Vikas Sharma, P.K. Singh, S.R. Bhakar, K.K. Yadav, S.S. Lakhawat, & Manjeet Singh. (2021). Pan evaporation and sensor-based approaches of irrigation scheduling for crop water requirement, growth and yield of okra. Journal of Agrometeorology, 23(4), 389–395. https://doi.org/10.54386/jam.v23i4.142
  • Zegbe, J. A., Behboudian, M. H., & Clothier, B. E. (2006). Responses of ‘Petopride’ processing tomato to partial rootzone drying at different phenological stages. Irrigation Science, 24(3), 203-210. DOI 10.1007/s00271-005-0018-4

Optimizing irrigation scheduling using a drip system to enhance water use efficiency in tomato cultivation

Year 2025, Volume: 9 Issue: 2, 261 - 271, 26.06.2025
https://doi.org/10.31015/2025.2.1

Abstract

Irrigation scheduling with drip irrigation is a crucial management technique for ensuring optimal soil moisture, thereby promoting plant growth, production, and economic return while enhancing water efficiency. Tomato crops, a mass consumer product grown worldwide, face significant challenges in the Sylhet region due to inefficient water management. To ascertain the best watering schedule for tomato crops based on evapotranspiration, a field experiment was carried out utilizing a randomized complete block design (RCBD) with six treatments and four replications. The six treatments include two irrigation frequencies (daily basis, F1 and every alternate day, F2) with three water doses W1, W2, W3 (i.e., 50%ETc, 75%ETc, 100%ETc). The Penman-Monteith method was used to estimate crop water requirements, and water for farming was applied according to designated schedules. Data analysis using SPSS 23 revealed that the impacts of irrigation frequency and water doses on plant growth, fruit yield, and water use efficiency were significant, except for stem diameter. The plant height, number of fruits, number of flowers, yield, and water use efficiency were increased with increasing water doses and decreased with decreasing water doses. The maximum yield was gained by increasing irrigation frequency at F1 and water dosage at W3, but the highest WUE was obtained at a lower irrigation frequency under the treatment F2, with the highest water dose at W3. The study concluded that the irrigation scheduling F1W3 was the best in balancing tomato productivity, fruit quality, and WUE in this study. The findings of this study will help local farmers make sustainable decisions about their irrigation methods.

Ethical Statement

Peer-review Externally peer-reviewed. Conflict of interest The authors state there is no competing interest.

Supporting Institution

We express our appreciation to the Sylhet Agricultural University Research System (SAURes) for providing financial assistance for this research project, which was supported by the UGC.

Thanks

The authors thank for receiving National Science, Information and Communication Technology (NSICT) fellowship of the Government of the People’s Republic of Bangladesh for this work.

References

  • Abdelhady, S. A., El-Azm, N. A. I. A., & El-Kafafi, E. S. H. (2017). Effect of deficit irrigation levels and NPK fertilization rates on tomato growth, yield and fruits quality. Middle East Journal of Agriculture Research, 6(3), 587-604.
  • Agbemafle, R., Owusu-Sekyere, J., Bart-Plange, A., & Otchere, J. (2014). Effect of deficit irrigation and storage on Physicochemical quality of tomato (Lycopersicon esculentum Mill. var. Pechtomech). Food Science and Quality Management, 34(10).
  • Agbna, G. H., Dongli, S., Zhipeng, L., Elshaikh, N. A., Guangcheng, S., & Timm, L. C. (2017). Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae, 222, 90-101. http://dx.doi.org/10.1016/j.scienta.2017.05.004
  • Alemayehu, Y. A., Steyn, J. M., & Annandale, J. G. (2009). FAO-type crop factor determination for irrigation scheduling of hot pepper (Capsicum annuum L.) cultivars. South African Journal of Plant and Soil, 26(3), 186-194. https://doi.org/10.1080/02571862.2009.10639953
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  • Alves Souza, S., Higino Vieira, J., Bispo dos Santos Farias, D., da Silva, G. H., & Cabral Aleman, C. (2020). Impact of irrigation frequency and planting density on bean’s morpho-physiological and productive traits. Water, 12(9), 2468. DOI: 10.3390/w12092468
  • Arfanuzzaman, M., & Rahman, A. A. (2017). Sustainable water demand management in the face of rapid urbanization and ground water depletion for social–ecological resilience building. Global ecology and Conservation, 10, 9-22.
  • Biel, C., Camprubí, A., Lovato, P. E., & Calvet, C. (2021). On-farm reduced irrigation and fertilizer doses, and arbuscular mycorrhizal fungal inoculation improve water productivity in tomato production. Scientia Horticulturae, 288, 110337. https://doi.org/10.1016/j.scienta.2021.110337
  • Biswas, S. K., Akanda, A. R., Rahman, M. S., & Hossain, M. A. (2016). Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant, Soil and Environment, 61(3), 97-102. DOI: 10.17221/804/2014-PSE
  • Boltana, S. M., Bekele, D. W., Ukumo, T. Y., & Lohani, T. K. (2023). Evaluation of irrigation scheduling to maximize tomato production using comparative assessment of soil moisture and evapotranspiration in restricted irrigated regions. Cogent Food & Agriculture, 9(1), 2214428. https://doi.org/10.1080/23311932.2023.2214428
  • Buttaro, D., Santamaria, P., Signore, A., Cantore, V., Boari, F., Montesano, F. F., & Parente, A. (2015). Irrigation management of greenhouse tomato and cucumber using tensiometer: Effects on yield, quality and water use. Agriculture and agricultural science procedia, 4, 440-444. https://doi.org/10.1016/j.aaspro.2015.03.050
  • Chowdhury, N. T. (2010). Water management in Bangladesh: an analytical review. Water policy, 12(1), 32-51. https://doi.org/10.2166/wp.2009.112
  • Colimba-Limaico, J. E., Zubelzu-Minguez, S., & Rodríguez-Sinobas, L. (2022). Optimal irrigation scheduling for greenhouse tomato crop (Solanum lycopersicum L.) in Ecuador. Agronomy, 12(5), 1020. https://doi.org/10.3390/ agronomy12051020
  • De Azevedo, P. V., de Souza, C. B., da Silva, B. B., & da Silva, V. P. (2007). Water requirements of pineapple crop grown in a tropical environment, Brazil. Agricultural water management, 88(1-3), 201-208. DOI: 10.1016/j.agwat.2006.10.021
  • Deka, B., Bhagawati, M., & Dutta, M. (2023). Effect of drip, fertigation and plastic mulching on growth and yield of cauliflower. Scientist, 4(4), 238-244. https://doi.org/10.5281/zenodo.7816669
  • Derib, S. D., Descheemaeker, K., Haileslassie, A., & Amede, T. (2011). Irrigation water productivity as affected by water management in a small-scale irrigation scheme in the Blue Nile basin, Ethiopia. Experimental agriculture, 47(S1), 39-55. doi:10.1017/S0014479710000839
  • Eshete, D. G., Sinshaw, B. G., & Legese, K. G. (2020). Critical review on improving irrigation water use efficiency: Advances, challenges, and opportunities in the Ethiopia context. Water-Energy Nexus, 3, 143-154. https://doi.org/10.1016/j.wen.2020.09.001
  • Ewaid, S. H., Abed, S. A., & Al-Ansari, N. (2019). Crop water requirements and irrigation schedules for some major crops in Southern Iraq. Water, 11(4), 756. DOI: 10.3390/w11040756
  • FAO Irrigation and Drainage Paper. 2006.
  • Fara, S. J., Delazari, F. T., Gomes, R. S., Araújo, W. L., & da Silva, D. J. H. (2019). Stomata opening and productiveness response of fresh market tomato under different irrigation intervals. Scientia Horticulturae, 255, 86-95. https://doi.org/10.1016/j.scienta.2019.05.025
  • Farooque, A. A., Afzaal, H., Abbas, F., Bos, M., Maqsood, J., Wang, X., & Hussain, N. (2022). Forecasting daily evapotranspiration using artificial neural networks for sustainable irrigation scheduling. Irrigation Science, 1-15. DOI: 10.1007/s00271-021-00751-1
  • Ganjegunte, G. K., Sheng, Z., & Clark, J. A. (2012). Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater. Applied Water Science, 2, 119-125. DOI: 10.1007/s13201-012-0032-7
  • Gatahi, D. M. (2020). Challenges and opportunities in tomato production chain and sustainable standards. International Journal of Horticultural Science and Technology, 7(3), 235-262. DOI: 10.22059/ijhst.2020.300818.361
  • Hao, L. I. U., Duan, A. W., LI, F. S., Sun, J. S., Wang, Y. C., & Sun, C. T. (2013). Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China Plain. Journal of Integrative Agriculture, 12(3), 520-531.
  • Her, Y., Morgan, K. T., & Wang, Q. (2019). Excel-Based Computational Template for Irrigation Scheduling Using Dual Crop Coefficients. The Journal of Extension, 57(1), 3. https://doi.org/10.34068/ joe.57.01.03
  • Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of experimental botany, 55(407), 2427-2436.
  • Junk, W. J., An, S., Finlayson, C. M., Gopal, B., Květ, J., Mitchell, S. A., ... & Robarts, R. D. (2013). Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic sciences, 75, 151-167. DOI: 10.1007/s00027-012-0278-z
  • Karim, M. R., Rahman, M. S., & Alam, M. S. (2009). Profitability of summer BARI hybrid tomato cultivation in Jessore district of Bangladesh. Journal of Agriculture & Rural Development, 73-79.
  • Kuscu, H., Turhan, A., Ozmen, N., Aydinol, P., & Demir, A. O. (2014). Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Horticulture, Environment, and Biotechnology, 55, 103-114. DOI 10.1007/s13580-014-0180-9
  • Li, Y., Sun, Y., Liao, S., Zou, G., Zhao, T., Chen, Y., ... & Zhang, L. (2017). Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agricultural Water Management, 186, 139-146.
  • Linker, R. (2021). Stochastic model-based optimization of irrigation scheduling. Agricultural Water Management, 243, 106480. https://doi.org/10.1016/j.agwat.2020.106480
  • Liu, H., Li, H., Ning, H., Zhang, X., Li, S., Pang, J., ... & Sun, J. (2019). Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agricultural Water Management, 226, 105787. DOI: 10.1016/j.agwat.2019.105787
  • López Ordaz, A., Trejo López, C., Ramírez Ayala, C., Peña Valdivia, C. B., Tijerina Chávez, L., & Carrillo Salazar, J. A. (2011). Irrigation technique to increase the eficiency of water use in tomato. Revista mexicana de ciencias agrícolas, 2(4), 475-488.
  • Mahendran, S., & Bandara, D. C. (2000). Effects of soil moisture stress at different growth stages on vitamin C, capsaicin and β-carotene contents of chilli (Capsicum annuum L.) fruits and their impact on yield. Tropical Agricultural Research, 12, 95-106.
  • Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7(3), 975-992.
  • Marino, S., Aria, M., Basso, B., Leone, A. P., & Alvino, A. (2014). Use of soil and vegetation spectroradiometry to investigate crop water use efficiency of a drip irrigated tomato. European Journal of Agronomy, 59, 67-77. http://dx.doi.org/10.1016/j.eja.2014.05.012
  • Mohammad, F. S., Al-Ghobari, H. M., & El Marazky, M. S. A. (2013). Adoption of an intelligent irrigation scheduling technique and its effect on water use efficiency for tomato crops in arid regions. Australian Journal of Crop Science, 7(3), 305-313.
  • Mushtaq, R., Sharma, M. K., Ahmad, L., Krishna, B., Mushtaq, K., & Mir, J. I. (2020). Crop water requirement estimation using pan evaporimeter for high density apple plantation system in Kashmir region of India. Journal of Agrometeorology, 22(1), 86-88.
  • Naor, A., Naschitz, S., Peres, M., & Gal, Y. (2008). Responses of apple fruit size to tree water status and crop load. Tree Physiology, 28(8), 1255-1261. https://doi.org/10.1093/treephys/28.8.1255
  • Nouri, H., Glenn, E. P., Beecham, S., Chavoshi Boroujeni, S., Sutton, P., Alaghmand, S., ... & Nagler, P. (2016). Comparing three approaches of evapotranspiration estimation in mixed urban vegetation: Field-based, remote sensing-based and observational-based methods. Remote Sensing, 8(6), 492. DOI:10.3390/rs8060492
  • Oke, A. M., Osilaechuu, A. P., Aremu, T. E., & Ojediran, J. O. (2020, February). Effect of drip irrigation regime on plant height and stem girth of tomato (Lycopersicon esculentum Mill). In IOP Conference Series: Earth and Environmental Science, 445, 012016. DOI:10.1088/1755-1315/445/1/012016
  • Pardossi, A., & Incrocci, L. (2011). Traditional and new approaches to irrigation scheduling in vegetable crops. HortTechnology, 21(3), 309-313.
  • Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural water management, 147, 4-20. https://doi.org/10.1016/j.agwat.2014.07.031
  • Rebouças, M. D. O., Azevedo, B. M. D., Araújo, T. V. V. D., Vasconcelos, D. V. D., & Fernandes, C. N. V. (2017). Irrigation frequency on economic performance and productivity of tomato in the coast of Ceará, Brazil. Revista Caatinga, 30, 971-979. DOI: 10.1590/1983-21252017v30n418rc
  • Sezen, S. M., Celikel, G., Yazar, A., Tekin, S., & Kapur, B. (2010). Effect of irrigation management on yield and quality of tomatoes grown in different soilless media in a glasshouse. Journal of Scientific Research and Essays, 5(1), 41–48.
  • Simić, D., Pejić, B., Bekavac, G., Mačkić, K., Vojnov, B., Bajić, I., & Sikora, V. (2023). Effect of different ET-based irrigation scheduling on grain yield and water use efficiency of drip irrigated maize. Agriculture, 13(10), 1994. https://doi.org/10.3390/agriculture13101994
  • Sivakumar, R., & Srividhya, S. (2016). Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Advances in Horticultural Science, 30, 3-11. DOI: 10.13128/AHS-18696
  • Wu, Y., Yan, S., Fan, J., Zhang, F., Xiang, Y., Zheng, J., & Guo, J. (2021). Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae, 275, 109710. DOI: 10.1016/j.scienta.2020.109710
  • Vikas Sharma, P.K. Singh, S.R. Bhakar, K.K. Yadav, S.S. Lakhawat, & Manjeet Singh. (2021). Pan evaporation and sensor-based approaches of irrigation scheduling for crop water requirement, growth and yield of okra. Journal of Agrometeorology, 23(4), 389–395. https://doi.org/10.54386/jam.v23i4.142
  • Zegbe, J. A., Behboudian, M. H., & Clothier, B. E. (2006). Responses of ‘Petopride’ processing tomato to partial rootzone drying at different phenological stages. Irrigation Science, 24(3), 203-210. DOI 10.1007/s00271-005-0018-4
There are 50 citations in total.

Details

Primary Language English
Subjects Irrigation Systems
Journal Section Research Articles
Authors

Tahmina Akter 0000-0003-1147-2268

Nargis Akter 0009-0006-1847-8100

Ashutus Singha 0000-0002-1946-3860

Mohammad Nurun Nabi Mazumder 0000-0002-7788-0101

Publication Date June 26, 2025
Submission Date December 31, 2024
Acceptance Date April 23, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Akter, T., Akter, N., Singha, A., Nurun Nabi Mazumder, M. (2025). Optimizing irrigation scheduling using a drip system to enhance water use efficiency in tomato cultivation. International Journal of Agriculture Environment and Food Sciences, 9(2), 261-271. https://doi.org/10.31015/2025.2.1


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27