Research Article
BibTex RIS Cite

3-Boyutlu Baskı Tekniği ile Hafif ve Portatif Bir Horn Anten Gerçekleştirilmesi

Year 2022, , 370 - 379, 25.09.2022
https://doi.org/10.28979/jarnas.1039348

Abstract

Bu çalışmada, ISM uygulamalarında kullanılabilen frekanslardan biri olan 5.8GHz merkez frekansına sahip bir horn anten tasarımı ve gerçekleştirilmesi yapılmıştır. Literatürdeki ve piyasadaki mevcut çalışmalara getirilen yenilik ise, tasarlanan ve benzetime tabi tutulan horn anten geometrisinin 3-boyutlu baskı tekniği ile içerisinde karbon nanotüp parçacıklar bulunan iletken filament kullanılarak gerçekleştirilmiş olmasıdır. Bu sayede, standart metalik muadil antenlere nazaran çok daha hafif bir anten elde edilmiştir. Ayrıca, metalik gövdeli antenlere göre 3-boyutlu baskı tekniği ile daha hızlı ve pratik bir şekilde üretilmiştir. Planlanan antenin geometrik ölçüleri öncelikle bir yazılım vasıtasıyla tasarlanmıştır. Daha sonra ise 5.8GHz merkez frekansını sağlayacak şekilde antenin ışıma elemanının boyutu optimize edilmiştir. Tasarlanan antenin bu merkez frekansını sağladığı elektromanyetik benzetimler yoluyla doğrulanmıştır. Daha sonra ise tasarlanan anten geometrisi 3-boyutlu çizim programı ile çizilerek baskıya hazır hale getirilmiştir. Bu anten, iletken karbon nanotüp içeren PLA filamenti ile Ultimaker baskı makinesinde üretilmiştir. Antenin ışıma elemanı ile SMA konnektörü ise bir sonraki adımda takılmış ve anten hazır hale getirilmiştir. Üretilen piramidal horn antenin istenilen frekans bandında çalıştığı vektör devre analizörü ile yapılan ölçümler neticesinde gösterilmiştir. Baskı alınan anten, herhangi bir ek kaplama veya iletken spreye gerek duymadan, karbon nanotüp içeren PLA filament sayesinde istenilen frekans karakteristiğini göstermiştir. Üretilen anten, PLA filament sayesinde SMA konnektör ve ışıma elemanı dahil olmak üzere sadece 64.53 gram ağırlığına sahiptir. Özellikle hafif ve mobil savunma ve haberleşme teknolojilerindeki gelişmeler ve ihtiyaçlar göz önünde bulundurulduğunda, 3-boyutlu olarak üretilen bu tip hafif antenlerin geniş bir kullanım potansiyelinin olabileceği değerlendirilmiştir.

References

  • Balanis C.A. (2016). Antenna Theory: Analysis and Design. Wiley, USA. ISBN: 978-1-118-64206-1.
  • Bor-Yaliniz I, Szyszkowicz S, ve Yanikomeroglu H. (2018). Environment-aware drone-base-station place-ments in modern metropolitans. IEEE Wireless Communication Letters, 7: 372–375. Retrieved from: https://doi.org/10.1109/LWC.2017.2778242
  • Chuma E.L., Iano Y., Roger L.L.B., Scroccaro M., Frazatto F., ve Manera L.T. (2019). Performance anal-ysis of X band horn antennas using additive manufacturing method coated with different techniques. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 18: 263–269. Retrieved from: https://doi.org/10.1590/2179-10742019v18i21337
  • Esfahani M.R.N., Shuttleworth M.P., Harris R.A., Kay R.W., Doychinov V., Robertson I.D., Marques-Hueso J., Jones T.D.A., Ryspayeva A., ve Desmulliex M.P.Y.. (2018). Hybrid additive manufacture of conformal antennas. Proc. of IEEE MTT-S International Microwave Workshop Series on Advanced Ma-terials and Processes for RF and THz Applications, 17–19. Retrieved from: https://doi.org/10.1109/IMWS-AMP.2018.8457128
  • ETS-Lindgren Standard Antenna Datasheet. Retrieved from: www.ets-lindgren.com. Accessed: 04.02.2021.
  • FreeCad 3D Parametric Modeller. Retrieved from: www.freecadweb.org. Accessed: 14.03.2021.
  • Functionalize F-Electric PLA. Retrieved from: www.functionalize.com/about/functionalize-f-electric-highly-conductive-filament. Accessed: 04.02.2021.
  • Genç A. (2019). Gain increase of horn antenna with waveguide feeding network by using 3D printing technology. Bayburt Üniversitesi Fen Bilimleri Dergisi, 2: 18–25. Retrieved from: https://dergipark.org.tr/en/pub/bufbd/issue/46478/534593
  • Genç A., Başyiğit İ., Göksu T., ve Helhel S. (2017). Investigation of the performances of X-Ku band 3D printing pyramidal horn antennas coated with the different metals. Proc. of 10th International Confer-ence on Electrical and Electronics Engineering (ELECO), 1012–1016. Retrieved from: https://ieeexplore.ieee.org/document/8266200
  • Gu C., Gao S., Fusco V., Gibbons G., Sanz-Izqueirdo B., Standaert A., Raynaert P., Bosch W., Gadringer M., Xu R., ve Yang X. (2020). A D-band 3D printed antenna. IEEE Transactions on Terahertz Science and Technology; 10: 433–442. Retrieved from: https://doi.org/10.1109/TTHZ.2020.2986650
  • Hu K., Duan Y., Zhang H., Liu D., Yan B., ve Peng F. (2018). Manufacturing and 3D printing of continu-ous carbon fiber prepreg filament. Composites; 53: 1887–1898. Retrieved from: https://doi.org/10.1007/s10853-017-1624-2
  • Hui K-P., Philips D., ve Kekirigoda A. (2017). Beyond line-of-sight range extension with OPAL using autonomous un-manned aerial vehicles. Proc. of IEEE Military Communications Conference, 279–284. Retrieved from: https://doi.org/10.1109/MILCOM.2017.8170774
  • Kiesel G., Bowden P., Cook K., Habib M., Marsh J., Reid D., Phillips C., ve Baker B.(2020). Practical 3D printing of antennas and RF electronics. Aerospace and Defense Technology, 403–406. Retrieved from: https://apps.dtic.mil/sti/pdfs/AD1041830.pdf
  • Kwon O., Park W.B., Lee S., Lee J.M., ve Park Y.M., Hwang K.C. (2017). 3D-printed super-wideband spidron fractal cube antenna with laminated copper. Applied Sciences 2017; 7: 979–988. Retrieved from: https://doi.org/10.3390/app7100979
  • Kyovtorov V., Georgiev I., Margenov S., Stoychev D., Oliveri F., ve Tarchi D. (2017). New antenna design approach–3D polymer printing and metallization experimental test at 14–18 GHz. AEU International Journal of Electronics and Communications 2017; 73: 119–128. Retrieved from: https://doi.org/10.1016/j.aeue.2016.12.017
  • Lee S., Yang Y., Lee K-Y., Jung K-Y., Hwang K.C. (2018). Robust design of 3D-printed 6–18 GHz double-ridged TEM horn antenna. Applied Sciences, 8: 1582–1592. Retrieved from: https://doi.org/10.3390/app8091582
  • Matthew E., Pitzanti G., Larraneta E., ve Lamprou D.A. (2020). 3D printing of pharmaceuticals and drug delivery devices. Pharmaceutics; 12: 266–275. Retrieved from: https://dx.doi.org/10.3390%2Fpharmaceutics12030266
  • Mazar H. (2014). International, regional and national regulation of SRDs. Proc. of ITU Workshop on Short Range Devices and Ultra Wide Band, 27–32. Retrieved from: https://www.itu.int/en/ITU-R/study-groups/workshops/RWP1B-SRD-UWB-14/Presentations/International,%20regional%20and%20national%20regulation%20of%20SRDs.pdf
  • Midtboen V., Kjelgard K.G., ve Lande T.S. (2017). 3D printed horn antenna with PCB microstrip feed for UWB radar applications. Proc. of IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). Retrieved from: https://doi.org/10.1109/IMWS-AMP.2017.8247374
  • Mishra A., ve Li C. (2019). A Low Power 5.8-GHz ISM-band intermodulation radar system for target mo-tion discrimination. IEEE Sensors Journal, 19: 9206–9214. Retrieved from: https://doi.org/10.1109/JSEN.2019.2926189 NS-MI Standard Gain Horns. Retrieved from: www.ns-mi.com. Accessed: 04.02.2021.
  • Pasternack Standard Gain Horn Antennas. Retrieved from: www.pasternack.com/antennas-category.aspx. Accessed: 04.02.2021.
  • Phillips B.T., Allder J., Bloan G., Nagle R.S., Redington A., Hellebrekers T., Borden J., Pawlenko N., ve Licht S. (2020). Additive manufacturing aboard a moving vessel at sea using passively stabilized ste-reolithography (SLA) 3D printing. Additive Manufacturing; 31: 100969. Retrieved from: https://doi.org/10.1016/j.addma.2019.100969
  • Shahrubudin N., Lee T., ve Ramlan R. (2019). An overview on 3D printing technology: technological, materials and applications. Procedia Manufacturing; 35: 1286–296. Retrieved from: https://doi.org/10.1016/j.promfg.2019.06.089
  • So K., Luk K., Chan C.H., Chan K.F. (2018). 3D printed high gain complementary dipole/slot antenna array. Applied Sciences, 8: 1410–1417. Retrieved from: https://doi.org/10.3390/app8081410
  • Tak J., Kang D-G., ve Choi J. (2017). A lightweight waveguide horn antenna made via 3d printing and conductive spray coating. Microwave and Optical Technology Letters; 59: 727–729. Retrieved from: https://doi.org/10.1002/mop.30374
  • Wang K., Ho C., Zhang C., ve Wang B. (2017). A Review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering 3: 653–662. Retrieved from: https://doi.org/10.1016/J.ENG.2017.05.013
  • Yao H., Sharma S., Henderson R., Ashrafi S., ve MacFarlane D.. (2017). Ka band 3D printed horn anten-nas. Proc of Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS): 1–4. Re-trieved from: https://doi.org/10.1109/WMCaS.2017.8070701
  • Zhang B., Chen W., Wu Y., Ding K., ve Li R. (2017). Review of 3D printed millimeter-wave and terahertz passive devices. International Journal of Antennas and Propagation, 1297931. Retrieved from: https://doi.org/10.1155/2017/1297931
  • Zhang B., Guo Y-X., Sun H., Wu Y. (2018). Metallic, 3D-printed, K-band-stepped,double-ridged square horn antennas. Applied Sciences 2018; 8: 33–40. Retrieved from: https://doi.org/10.3390/app8010033

Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology

Year 2022, , 370 - 379, 25.09.2022
https://doi.org/10.28979/jarnas.1039348

Abstract

In this study, a horn antenna operating at 5.8GHz centre frequency, which is an ISM operating frequency, is de-signed and manufactured. The novelty of the antenna is that it is produced using a 3D printer with a conductive filament containing carbon nanotube particles. The geometric dimensions of the antenna were calculated by means of an antenna design software. Then, the size of the radiating element of the antenna was optimized to set the centre frequency to 5.8GHz. It has been verified by electromagnetic simulations that the designed antenna exhibits this centre frequency. Then, the designed antenna geometry was sketched in a 3-dimensional drawing program and made ready for printing. This antenna was fabricated on an Ultimaker 3D printer with a PLA fila-ment containing conductive carbon nanotubes. The radiation element of the antenna and the SMA connector were finally attached to the printed antenna. The frequency response of the antenna is then measured using a vector network analyser and it has been shown that the produced pyramidal horn antenna works in the desired frequency band. The printed antenna has the desired frequency characteristic without the need for any additional coating or conductive spray thanks to the PLA filament containing conductive carbon nanotubes. The produced antenna has a weight of only 64.53 grams, including the SMA connector and the radiation element. The proposed lightweight and practical horn antenna design concept may have important applications considering the advances and needs of mobile defence and telecommunication systems.

References

  • Balanis C.A. (2016). Antenna Theory: Analysis and Design. Wiley, USA. ISBN: 978-1-118-64206-1.
  • Bor-Yaliniz I, Szyszkowicz S, ve Yanikomeroglu H. (2018). Environment-aware drone-base-station place-ments in modern metropolitans. IEEE Wireless Communication Letters, 7: 372–375. Retrieved from: https://doi.org/10.1109/LWC.2017.2778242
  • Chuma E.L., Iano Y., Roger L.L.B., Scroccaro M., Frazatto F., ve Manera L.T. (2019). Performance anal-ysis of X band horn antennas using additive manufacturing method coated with different techniques. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 18: 263–269. Retrieved from: https://doi.org/10.1590/2179-10742019v18i21337
  • Esfahani M.R.N., Shuttleworth M.P., Harris R.A., Kay R.W., Doychinov V., Robertson I.D., Marques-Hueso J., Jones T.D.A., Ryspayeva A., ve Desmulliex M.P.Y.. (2018). Hybrid additive manufacture of conformal antennas. Proc. of IEEE MTT-S International Microwave Workshop Series on Advanced Ma-terials and Processes for RF and THz Applications, 17–19. Retrieved from: https://doi.org/10.1109/IMWS-AMP.2018.8457128
  • ETS-Lindgren Standard Antenna Datasheet. Retrieved from: www.ets-lindgren.com. Accessed: 04.02.2021.
  • FreeCad 3D Parametric Modeller. Retrieved from: www.freecadweb.org. Accessed: 14.03.2021.
  • Functionalize F-Electric PLA. Retrieved from: www.functionalize.com/about/functionalize-f-electric-highly-conductive-filament. Accessed: 04.02.2021.
  • Genç A. (2019). Gain increase of horn antenna with waveguide feeding network by using 3D printing technology. Bayburt Üniversitesi Fen Bilimleri Dergisi, 2: 18–25. Retrieved from: https://dergipark.org.tr/en/pub/bufbd/issue/46478/534593
  • Genç A., Başyiğit İ., Göksu T., ve Helhel S. (2017). Investigation of the performances of X-Ku band 3D printing pyramidal horn antennas coated with the different metals. Proc. of 10th International Confer-ence on Electrical and Electronics Engineering (ELECO), 1012–1016. Retrieved from: https://ieeexplore.ieee.org/document/8266200
  • Gu C., Gao S., Fusco V., Gibbons G., Sanz-Izqueirdo B., Standaert A., Raynaert P., Bosch W., Gadringer M., Xu R., ve Yang X. (2020). A D-band 3D printed antenna. IEEE Transactions on Terahertz Science and Technology; 10: 433–442. Retrieved from: https://doi.org/10.1109/TTHZ.2020.2986650
  • Hu K., Duan Y., Zhang H., Liu D., Yan B., ve Peng F. (2018). Manufacturing and 3D printing of continu-ous carbon fiber prepreg filament. Composites; 53: 1887–1898. Retrieved from: https://doi.org/10.1007/s10853-017-1624-2
  • Hui K-P., Philips D., ve Kekirigoda A. (2017). Beyond line-of-sight range extension with OPAL using autonomous un-manned aerial vehicles. Proc. of IEEE Military Communications Conference, 279–284. Retrieved from: https://doi.org/10.1109/MILCOM.2017.8170774
  • Kiesel G., Bowden P., Cook K., Habib M., Marsh J., Reid D., Phillips C., ve Baker B.(2020). Practical 3D printing of antennas and RF electronics. Aerospace and Defense Technology, 403–406. Retrieved from: https://apps.dtic.mil/sti/pdfs/AD1041830.pdf
  • Kwon O., Park W.B., Lee S., Lee J.M., ve Park Y.M., Hwang K.C. (2017). 3D-printed super-wideband spidron fractal cube antenna with laminated copper. Applied Sciences 2017; 7: 979–988. Retrieved from: https://doi.org/10.3390/app7100979
  • Kyovtorov V., Georgiev I., Margenov S., Stoychev D., Oliveri F., ve Tarchi D. (2017). New antenna design approach–3D polymer printing and metallization experimental test at 14–18 GHz. AEU International Journal of Electronics and Communications 2017; 73: 119–128. Retrieved from: https://doi.org/10.1016/j.aeue.2016.12.017
  • Lee S., Yang Y., Lee K-Y., Jung K-Y., Hwang K.C. (2018). Robust design of 3D-printed 6–18 GHz double-ridged TEM horn antenna. Applied Sciences, 8: 1582–1592. Retrieved from: https://doi.org/10.3390/app8091582
  • Matthew E., Pitzanti G., Larraneta E., ve Lamprou D.A. (2020). 3D printing of pharmaceuticals and drug delivery devices. Pharmaceutics; 12: 266–275. Retrieved from: https://dx.doi.org/10.3390%2Fpharmaceutics12030266
  • Mazar H. (2014). International, regional and national regulation of SRDs. Proc. of ITU Workshop on Short Range Devices and Ultra Wide Band, 27–32. Retrieved from: https://www.itu.int/en/ITU-R/study-groups/workshops/RWP1B-SRD-UWB-14/Presentations/International,%20regional%20and%20national%20regulation%20of%20SRDs.pdf
  • Midtboen V., Kjelgard K.G., ve Lande T.S. (2017). 3D printed horn antenna with PCB microstrip feed for UWB radar applications. Proc. of IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). Retrieved from: https://doi.org/10.1109/IMWS-AMP.2017.8247374
  • Mishra A., ve Li C. (2019). A Low Power 5.8-GHz ISM-band intermodulation radar system for target mo-tion discrimination. IEEE Sensors Journal, 19: 9206–9214. Retrieved from: https://doi.org/10.1109/JSEN.2019.2926189 NS-MI Standard Gain Horns. Retrieved from: www.ns-mi.com. Accessed: 04.02.2021.
  • Pasternack Standard Gain Horn Antennas. Retrieved from: www.pasternack.com/antennas-category.aspx. Accessed: 04.02.2021.
  • Phillips B.T., Allder J., Bloan G., Nagle R.S., Redington A., Hellebrekers T., Borden J., Pawlenko N., ve Licht S. (2020). Additive manufacturing aboard a moving vessel at sea using passively stabilized ste-reolithography (SLA) 3D printing. Additive Manufacturing; 31: 100969. Retrieved from: https://doi.org/10.1016/j.addma.2019.100969
  • Shahrubudin N., Lee T., ve Ramlan R. (2019). An overview on 3D printing technology: technological, materials and applications. Procedia Manufacturing; 35: 1286–296. Retrieved from: https://doi.org/10.1016/j.promfg.2019.06.089
  • So K., Luk K., Chan C.H., Chan K.F. (2018). 3D printed high gain complementary dipole/slot antenna array. Applied Sciences, 8: 1410–1417. Retrieved from: https://doi.org/10.3390/app8081410
  • Tak J., Kang D-G., ve Choi J. (2017). A lightweight waveguide horn antenna made via 3d printing and conductive spray coating. Microwave and Optical Technology Letters; 59: 727–729. Retrieved from: https://doi.org/10.1002/mop.30374
  • Wang K., Ho C., Zhang C., ve Wang B. (2017). A Review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering 3: 653–662. Retrieved from: https://doi.org/10.1016/J.ENG.2017.05.013
  • Yao H., Sharma S., Henderson R., Ashrafi S., ve MacFarlane D.. (2017). Ka band 3D printed horn anten-nas. Proc of Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS): 1–4. Re-trieved from: https://doi.org/10.1109/WMCaS.2017.8070701
  • Zhang B., Chen W., Wu Y., Ding K., ve Li R. (2017). Review of 3D printed millimeter-wave and terahertz passive devices. International Journal of Antennas and Propagation, 1297931. Retrieved from: https://doi.org/10.1155/2017/1297931
  • Zhang B., Guo Y-X., Sun H., Wu Y. (2018). Metallic, 3D-printed, K-band-stepped,double-ridged square horn antennas. Applied Sciences 2018; 8: 33–40. Retrieved from: https://doi.org/10.3390/app8010033
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering, Plating Technology
Journal Section Research Article
Authors

Serhan Yamaçlı 0000-0002-3375-0241

Publication Date September 25, 2022
Submission Date December 27, 2021
Published in Issue Year 2022

Cite

APA Yamaçlı, S. (2022). Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology. Journal of Advanced Research in Natural and Applied Sciences, 8(3), 370-379. https://doi.org/10.28979/jarnas.1039348
AMA Yamaçlı S. Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology. JARNAS. September 2022;8(3):370-379. doi:10.28979/jarnas.1039348
Chicago Yamaçlı, Serhan. “Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 3 (September 2022): 370-79. https://doi.org/10.28979/jarnas.1039348.
EndNote Yamaçlı S (September 1, 2022) Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology. Journal of Advanced Research in Natural and Applied Sciences 8 3 370–379.
IEEE S. Yamaçlı, “Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology”, JARNAS, vol. 8, no. 3, pp. 370–379, 2022, doi: 10.28979/jarnas.1039348.
ISNAD Yamaçlı, Serhan. “Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology”. Journal of Advanced Research in Natural and Applied Sciences 8/3 (September 2022), 370-379. https://doi.org/10.28979/jarnas.1039348.
JAMA Yamaçlı S. Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology. JARNAS. 2022;8:370–379.
MLA Yamaçlı, Serhan. “Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 3, 2022, pp. 370-9, doi:10.28979/jarnas.1039348.
Vancouver Yamaçlı S. Implementation of a Lightweight and Portable Horn Antenna Using 3-D Printing Technology. JARNAS. 2022;8(3):370-9.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).