Research Article
BibTex RIS Cite
Year 2023, , 183 - 189, 06.03.2023
https://doi.org/10.28979/jarnas.1110421

Abstract

References

  • Akar, M., Yüce, S., Şahin, S. (2018). On the Dual Hyperbolic Numbers and the Complex Hyperbolic numbers, Journal of Computer Science & Computational Mathematics, 8, 1-6.
  • Aydın, F. T. (2019). Hyperbolic Fibonacci Sequence, Universal Journal of Mathematics and Applications, 2(2), 59-64.
  • Azak, Z., Güngör, M. A. (2017). Investigation of Dual-complex Fibonacci, Dual-complex Lucas Numbers and Their Properties, Adv. Appl. Clifford Algebras, 27, 3083-3096.
  • Catarino, P. (2019). Bicomplex k-Pell Quaternions, Computational Methods and Function Theory, 19, 65-76.
  • Clifford, W. K. (1871). A Preliminary Sketch of Biquaternions, London Mathematical Society. DOI: ttps://doi.org/10.1112/plms/s1-4.1.381
  • Dikmen, C. M. (2019). Hyperbolic Jacobsthal Numbers, Asian Research Journal of Mathematics, 15(4), 1-9.
  • Fjelstad, P., Gal, S. G. (1998). n-dimensional Dual Complex Numbers, Advances in Applied Clifford Algebras, 8(2), 309-322, 1998.
  • Gül, K. (2020). Dual Bicomplex Horadam Quaternions, Notes on Numbers Theory and Discrete Mathematics, 26, 187-205.
  • Gürses, N., Şentürk, G. Y., Yüce, S. (2021). A Study on the Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers, Journal of Science, 34(1), 180-194.
  • Halıcı, S., Çürük, Ş. (2020). On Dual k-bicomplex Numbers and Some Identities Including Them, Fundamental Journal of Mathematics and Applications, 3, 86-93.
  • Horadam, A. F. (1963). Complex Fibonacci Numbers and Fibonacci Quaternions, American Math. Monthly, 70, 289-291.
  • Koshy, T. (2014). Pell and Pell-Lucas Numbers with Applications, Springer New York Heidelberg Dordrecht, London.
  • Majernik, V. (1996). Multicomponent Number Systems, Acta Physica Polonica A., 90(3), 491-498.
  • Matsuda, G., Kaji, S., Ochiai, H. (2014). Anti-commutative Dual Complex Numbers and 2 Rigid Transformation, Mathematical Progress in Expressive Inage Synthesis I. Springer.
  • Messelmi, F. (2022). Dual Complex Numbers and Their Holomorphic Functions. Retrieved from: https://hal.archives-ouvertes.fr/hal-01114178
  • Soykan, Y., Göcen, M. (2020). Properties of hyperbolic generalized Pell numbers, Notes on Number Theory and Discrete Mathematics, 26, 136-153.
  • Soykan, Y. (2021). On Dual Hyperbolic Generalized Fibonacci Numbers, Indian Journal of Pure and Applied Mathematics, 52, 62-78.
  • Vajda, S. (1989). Fibonacci and Lucas Numbers and the Golden Section, Ellis Horwood Limited Publ., England.

Gaussian-bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers

Year 2023, , 183 - 189, 06.03.2023
https://doi.org/10.28979/jarnas.1110421

Abstract

In this study, we define a new type of Pell and Pell-Lucas numbers which are called Gaussian-bihyperbolic Pell and Pell-Lucas numbers. We also define negaGaussian-bihyperbolic Pell and Pell-Lucas numbers. Moreover, we obtain Binet’s formulas, generating function formulas, d’Ocagne’s identities, Catalan’s identities, Cassini’s identities and some sum formulas for these new type numbers and we investigate some algebraic proporties of these. Furthermore, we give the matrix representation of Gaussian-bihyperbolic Pell and Pell-Lucas numbers.

References

  • Akar, M., Yüce, S., Şahin, S. (2018). On the Dual Hyperbolic Numbers and the Complex Hyperbolic numbers, Journal of Computer Science & Computational Mathematics, 8, 1-6.
  • Aydın, F. T. (2019). Hyperbolic Fibonacci Sequence, Universal Journal of Mathematics and Applications, 2(2), 59-64.
  • Azak, Z., Güngör, M. A. (2017). Investigation of Dual-complex Fibonacci, Dual-complex Lucas Numbers and Their Properties, Adv. Appl. Clifford Algebras, 27, 3083-3096.
  • Catarino, P. (2019). Bicomplex k-Pell Quaternions, Computational Methods and Function Theory, 19, 65-76.
  • Clifford, W. K. (1871). A Preliminary Sketch of Biquaternions, London Mathematical Society. DOI: ttps://doi.org/10.1112/plms/s1-4.1.381
  • Dikmen, C. M. (2019). Hyperbolic Jacobsthal Numbers, Asian Research Journal of Mathematics, 15(4), 1-9.
  • Fjelstad, P., Gal, S. G. (1998). n-dimensional Dual Complex Numbers, Advances in Applied Clifford Algebras, 8(2), 309-322, 1998.
  • Gül, K. (2020). Dual Bicomplex Horadam Quaternions, Notes on Numbers Theory and Discrete Mathematics, 26, 187-205.
  • Gürses, N., Şentürk, G. Y., Yüce, S. (2021). A Study on the Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers, Journal of Science, 34(1), 180-194.
  • Halıcı, S., Çürük, Ş. (2020). On Dual k-bicomplex Numbers and Some Identities Including Them, Fundamental Journal of Mathematics and Applications, 3, 86-93.
  • Horadam, A. F. (1963). Complex Fibonacci Numbers and Fibonacci Quaternions, American Math. Monthly, 70, 289-291.
  • Koshy, T. (2014). Pell and Pell-Lucas Numbers with Applications, Springer New York Heidelberg Dordrecht, London.
  • Majernik, V. (1996). Multicomponent Number Systems, Acta Physica Polonica A., 90(3), 491-498.
  • Matsuda, G., Kaji, S., Ochiai, H. (2014). Anti-commutative Dual Complex Numbers and 2 Rigid Transformation, Mathematical Progress in Expressive Inage Synthesis I. Springer.
  • Messelmi, F. (2022). Dual Complex Numbers and Their Holomorphic Functions. Retrieved from: https://hal.archives-ouvertes.fr/hal-01114178
  • Soykan, Y., Göcen, M. (2020). Properties of hyperbolic generalized Pell numbers, Notes on Number Theory and Discrete Mathematics, 26, 136-153.
  • Soykan, Y. (2021). On Dual Hyperbolic Generalized Fibonacci Numbers, Indian Journal of Pure and Applied Mathematics, 52, 62-78.
  • Vajda, S. (1989). Fibonacci and Lucas Numbers and the Golden Section, Ellis Horwood Limited Publ., England.
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Hasan Gökbaş 0000-0002-3323-8205

Publication Date March 6, 2023
Submission Date April 28, 2022
Published in Issue Year 2023

Cite

APA Gökbaş, H. (2023). Gaussian-bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers. Journal of Advanced Research in Natural and Applied Sciences, 9(1), 183-189. https://doi.org/10.28979/jarnas.1110421
AMA Gökbaş H. Gaussian-bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers. JARNAS. March 2023;9(1):183-189. doi:10.28979/jarnas.1110421
Chicago Gökbaş, Hasan. “Gaussian-Bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 1 (March 2023): 183-89. https://doi.org/10.28979/jarnas.1110421.
EndNote Gökbaş H (March 1, 2023) Gaussian-bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers. Journal of Advanced Research in Natural and Applied Sciences 9 1 183–189.
IEEE H. Gökbaş, “Gaussian-bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers”, JARNAS, vol. 9, no. 1, pp. 183–189, 2023, doi: 10.28979/jarnas.1110421.
ISNAD Gökbaş, Hasan. “Gaussian-Bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers”. Journal of Advanced Research in Natural and Applied Sciences 9/1 (March 2023), 183-189. https://doi.org/10.28979/jarnas.1110421.
JAMA Gökbaş H. Gaussian-bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers. JARNAS. 2023;9:183–189.
MLA Gökbaş, Hasan. “Gaussian-Bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 1, 2023, pp. 183-9, doi:10.28979/jarnas.1110421.
Vancouver Gökbaş H. Gaussian-bihyperbolic Numbers Containing Pell and Pell-Lucas Numbers. JARNAS. 2023;9(1):183-9.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).