Research Article
BibTex RIS Cite

KARMA ÇELİK LİFLİ KENDİLİĞİNDEN YERLEŞEN BETONUN ELEKTRİKSEL DİRENCİ

Year 2022, Volume: 10 Issue: 2, 482 - 494, 30.06.2022
https://doi.org/10.21923/jesd.960538

Abstract

Beton yüksek basınç dayanımı yanı sıra çok düşük elektriksel iletkenliği sahiptir. Bu çalışmada kendiliğinden yerleşen betonun (KYB) elektriksel özdirenci, iletkenliği ve sıcaklık artışı üzerinde uzun ve kısa çelik liflerin etkisini, lif kombinasyonu (tek ve karma) ve kısa çelik liflerin boyuna (6 ve 13 mm) bağlı olarak belirlemek için dört adet karışım tasarlanmıştır. Bu karışımlar, lifsiz referans, sadece uzun tek lif takviyeli ve uzun lif ile iki farklı boya sahip kısa çelik lif içeren iki adet karma çelik lif takviyeli karışım olmak üzere dört farklı karışım tasarlanmıştır. Tüm çelik lif takviyeli KYB karışımları hacimce toplam %1 lif içermektedir. Karışımların belirlenmesinde EFNARC tarafından önerilen işlenebilirlik testleri (Çökme-yayılma, t500 ve J-halkası yükseklik farkı) dikkate alınmıştır. Karışımlara ait mekanik özellikler (basınç, yarmada çekme ve eğilme dayanımı) ile elektriksel özdirencin belirlenmesi için numuneler üretilmiş ve toplam 90 gün boyunca 23±2 0C’de su içerisinde kür edilmiştir. Sonuçta çelik lif takviyesinin betonun elektriksel özdirencini düşürdüğü ve dolayısıyla iletkenliğini artırdığı tespit edilmiştir. Bunun yanında karma lifli KYB numunelerinin en düşük elektriksel özdirenç ve en yüksek iletkenlik ile sıcaklık artışına sahip olduğu görülürken, narinliği yüksek olan 13 mm boyunda mikro çelik lifin betonun elektriksel özellikleri üzerinde 6 mm boyunda mikro çelik life göre daha olumlu etkiye sahip olduğu bulunmuştur.

Supporting Institution

İnönü Üniversitesi

Project Number

FYL-2020-2148

Thanks

Teşekkür (Acknowledgement) Bu çalışmada, İnönü Üniversitesi Bilimsel Araştırma Projesi Birimine verdiği finansal destekten dolayı minnettarız.

References

  • Akcay B., 2012. Experimental investigation on uniaxial tensile strength of hybrid fibre concrete. Composites: Part B, 43, 766-78.
  • Aslani, F., Hamidi, F., Valizadeh, A., & Dang, A. T. N., 2020. High-performance fibre-reinforced heavyweight self-compacting concrete: Analysis of fresh and mechanical properties. Construction and Building Materials, 232, 117230.
  • ASTM C1609. 2012. Standard Test Method for Flexural Performance of Fiber Reinforced Concrete (Using Beam With Third-Point Loading)ASTM International, West Conshohocken, PA.
  • ASTM C39. 2018. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA.
  • ASTM C496/C496M-17. 2017. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International, West Conshohocken, PA.
  • Balaguru, P., Narahar, R., Patel, M., 1992. Flexural toughness of steel fibre reinforced concrete. ACI Mater J, 89(6), 541–6
  • Bentur, A, Mindess, S., 1990. Fiber Reinforced Cementitious Composites, Elsevier Applied Science, London.
  • Bertolini, L. Bolzoni, F. Pastore, T. and Pedeferri, P., 2004. Effectiveness of a conductive cementitious mortar anode for cathodic protection of steel in concrete. Cement and Concrete Research, 34, 681-694.
  • BOĞA, A. R, 2017. Harçların mekanik ve elektriksel iletkenlik özelliklerine karbon lifi ve çelikhane cürufu kullanımının etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(3), 1066-1075.
  • Bunsell, A.R., 1988. Fiber Reinforcement for Composite Materials. Vol:2 Composite Materials Series, Elseiver Science, The Netherlands.
  • Chen, C.T., J.-J. Chang, W.C. Yeih, 2014. The effects of specimen parameters on the resistivity of concrete. Construction and Building Materials, 2014. 71: p. 35-4.
  • Chung, D.D.L., 2004. Electrically conductive cement-based materials. Advanced in Cement Research, 26(4), 167-176.
  • Das, B, Pandey S., 2011. Influence of fineness of fly ash on the carbonation and electrical conductivity of concrete. Journal Of Materials İn Civil Engineering, 23(9), 1365-1368.
  • EFNARC., 2005. The European Guidelines for Self-Compacting Concrete, Eur. Guidel. Self Compact. Concr.
  • F. Sulthan, Saloma,2019. Influence of hooked-end steel fibers on fresh and hardened properties of steel fiber reinforcement self-compacting concrete (SFRSCC). J. Phys.: Conf. Ser. 1198(3) 032005.
  • García A, Schlangen E. Ven M. And Liu Q., 2009. Electrical Conductivity Of Asphalt Mortar Containing Conductive Fibers And Fillers. Construction And Building Materials, 23, 3175–3181.
  • Gopalakrishnan, K, Ceylan, H. Kim, S, Yang, S. And Abdualla, H., 2015. Electrically Conductive Mortar Characterization For Self Heating Airfield Concrete Pavement Mix Design. International Journal Of Pavement Research And Technology, 8(5), 315-324.
  • Hannant, D. J., 1987. Fiber cements and fiber concrete. Chichester, UK, Wiley.
  • Huang, B.S. Chen, X.W. And Shu, X., 2009. Effects of electrically conductive additives laboratory-measured properties of asphalt mixtures. Journal Of Materials İn Civil Engineering, 21(10), 612–617.
  • Kına, C., 2019. Yüksek Performanslı Kendiliğinden Yerleşen Karma Lifli Beton Geliştirilmesi, Doktora Tezi, İnönü Üniversitesi, Malatya.
  • Liu, X., Wu, T., Yang, X., & Wei, H., 2019. Properties of self-compacting lightweight concrete reinforced with steel and polypropylene fibers. Construction and Building Materials, 226, 388–398.
  • Mobasher B, Li Cheng Y.,1996. Mechanical properties of hybrid cement based composites. American Concrete Institute Materials Journal, 93(3), 284-92, 1996.
  • Nanni, A., 1988. Splitting-tension test for fiber reinforced concrete. ACI Mater J. 85(4), 229–33.
  • Okamura & Quchi, 1999. Self-Compacting Concrete (pp 3-14). Development Present Use and Future. Proceedings of the First International RILEM Symposium. Edited by A. Skarendahland.
  • Pan, P. Wu, S. Xiao, F. Pang, L. And Xiao, Y., 2015, Conductive Asphalt Concrete: A Review On Structure Design, Performance, And Practical Applications. Journal Of Intelligent Material Systems And Structures, 26(7), 755-769.
  • Polder, R.B., 2001. Test Methods For On Site Measurement Of Resistivity Of Concrete. A RILEM TC – 154 Technical Recommendation, Construction And Building Materials, 15, 125-131.
  • Rambo, D. A. S., Silva, F. D. A., Filho, R. D. T., 2014. Mechanical behavior of hybrid steel-fiber self-consoldating concrete: materials and structural aspects. Materials & Design, 54, 32-42.
  • Rossi P., 1997. High performance multimodal fiber reinforced cement composites (HPMFRCC): the LCPC experience. Materials Journal, 94:6, 478- 783.
  • Rossi P., Acker P. & Malier Y., 1987. Effect of steel fibres at two different stages: the material and the structure. Mater Struct., 20, 436–9.
  • S. Cleven , M. Raupach, T. Matschei, 2021. Electrical Resistivity of Steel Fibre-Reinforced Concrete Influencing Parameter. Materials 2021, 14, 3408.
  • S. Kwon, T. Nishiwaki, T. Kikuta, H. Mihashi, 2014. Development of ultra-high performance hybrid fiber-reinforced cement-based composites. ACI Mater. J. 111 (3) 309–318.
  • S. Teng, V. Afroughsabet, C.P. Ostertag, 2018. Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Construction and Building Materials 182 504–515.
  • S.G. Nehme, R. László, A.E. Mir., 2017. Mechanical performance of steel fiber reinforced self-compacting concrete in panels, Procedia Eng. 196 90–96.
  • Sabbağ, N. & Uyanık, O., 2020. Özdirenç yöntemi kullanılarak donatılı betonların anizotropisinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , 26 (3) , 572-580.
  • Song, P. S., & Hwang, S., 2004. Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673.
  • Tabatabaeian, M., Khaloo A., Joshaghani A., Hajibandeh, E., 2017. Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high-strength SCC. Construction and Building Materials, 147, 497–509
  • Tian, X. & Hu, H., 2012. Test and Study on Electrical Property of Conductive Concrete. Procedia Earth and Planetary Science, 5(2011), 83–87.
  • Tuan, C.Y., 2004. Conductive Concrete for Bridge Deck Deicing and Anti-icing, Project No. SPR-PL-1(037) P512, Nebraska Department of Roads, July.
  • Tumidajski P.J., 1997. Electrical conductivity of Portland cement mortars. Cement and Concrete Research, 26(4), 529-534.
  • Turk K., Bassurucu M. and Bitkin RE.,2021. Workability, strength and flexural toughness properties of hybrid steel fiber reinforced SCC with high-volume fiber. Construction and Building Materials, 266, Part A, (10 January 2020), 120944, 2021. https://doi.org/10.1016/j.conbuildmat.2020.120944.
  • Turk K., Kina C. and Oztekin E., 2020. Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC. Advances in Concrete Construction, 10(3), pp. 257-269. DOI: 10.12989/acc.2020.10.3.257
  • Turk, K., Oztekin, E., & Kina, C., 2019. Self-compacting concrete with blended short and long fibres: experimental investigation on the role of fibre blend proportion. European Journal of Environmental and Civil Engineering, 0(0), 1–14.
  • Uygunoğlu, T., topçu, İ.B., şimşek, B., çinar, E., 2018. Kendiliğinden Yerleşen Harçların Elektriksel Özdirenci Üzerine Mineral Katkıların Etkisi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Cilt 22, Sayı 2, 986-992.
  • Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. Carbon dioxide emissions from the global cement industry. Annual review of energy and the environment, 26:1, (2001) 303-329.
  • Yehia, S. and C.Y. Tuan,1999. Conductive concrete overlay for bridge deck deicing. Materials Journal, 1999. 96(3): p. 382-390.

ELECTRICAL RESISTANCE OF HYBRID STEEL FIBER REINFORCED SELF- COMPACTING CONCRETE

Year 2022, Volume: 10 Issue: 2, 482 - 494, 30.06.2022
https://doi.org/10.21923/jesd.960538

Abstract

Concrete has high compressive strength as well as very low conductivity. In this study, the effect of long and short steel fibers on electrical resistivity, conductivity and temperature rise of self-compacting concrete (SCC) was investigated depending on fiber combinations (single and binary hybrid) and length of the short steel fibers (6 and 13 mm). For this purpose, four mixtures were designed: non-fiber reference, a single fiber-reinforced mixture with only long fibers and two hybrid steel fiber-reinforced mixtures with long and 6mm or 13 mm short steel fiber. Also, all steel fiber-reinforced mixtures contain a total of 1% steel fiber by volume. The workability tests of slump-flow, t500 and J-ring height difference were performed by the EFNARC. The samples were cured for 90 days and then, mechanical properties and electrical resistivity of samples were determined. Finally, the inclusion of steel fiber into SCC dropped the electrical resistivity and thus, increased its conductivity. In addition, hybrid fiber-reinforced SCC samples had the lowest electrical resistivity and highest conductivity and temperature rise. Also, 13 mm long micro steel fiber having high slenderness had a more positive effect on the electrical properties of concrete than 6 mm micro steel fiber.

Project Number

FYL-2020-2148

References

  • Akcay B., 2012. Experimental investigation on uniaxial tensile strength of hybrid fibre concrete. Composites: Part B, 43, 766-78.
  • Aslani, F., Hamidi, F., Valizadeh, A., & Dang, A. T. N., 2020. High-performance fibre-reinforced heavyweight self-compacting concrete: Analysis of fresh and mechanical properties. Construction and Building Materials, 232, 117230.
  • ASTM C1609. 2012. Standard Test Method for Flexural Performance of Fiber Reinforced Concrete (Using Beam With Third-Point Loading)ASTM International, West Conshohocken, PA.
  • ASTM C39. 2018. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA.
  • ASTM C496/C496M-17. 2017. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International, West Conshohocken, PA.
  • Balaguru, P., Narahar, R., Patel, M., 1992. Flexural toughness of steel fibre reinforced concrete. ACI Mater J, 89(6), 541–6
  • Bentur, A, Mindess, S., 1990. Fiber Reinforced Cementitious Composites, Elsevier Applied Science, London.
  • Bertolini, L. Bolzoni, F. Pastore, T. and Pedeferri, P., 2004. Effectiveness of a conductive cementitious mortar anode for cathodic protection of steel in concrete. Cement and Concrete Research, 34, 681-694.
  • BOĞA, A. R, 2017. Harçların mekanik ve elektriksel iletkenlik özelliklerine karbon lifi ve çelikhane cürufu kullanımının etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(3), 1066-1075.
  • Bunsell, A.R., 1988. Fiber Reinforcement for Composite Materials. Vol:2 Composite Materials Series, Elseiver Science, The Netherlands.
  • Chen, C.T., J.-J. Chang, W.C. Yeih, 2014. The effects of specimen parameters on the resistivity of concrete. Construction and Building Materials, 2014. 71: p. 35-4.
  • Chung, D.D.L., 2004. Electrically conductive cement-based materials. Advanced in Cement Research, 26(4), 167-176.
  • Das, B, Pandey S., 2011. Influence of fineness of fly ash on the carbonation and electrical conductivity of concrete. Journal Of Materials İn Civil Engineering, 23(9), 1365-1368.
  • EFNARC., 2005. The European Guidelines for Self-Compacting Concrete, Eur. Guidel. Self Compact. Concr.
  • F. Sulthan, Saloma,2019. Influence of hooked-end steel fibers on fresh and hardened properties of steel fiber reinforcement self-compacting concrete (SFRSCC). J. Phys.: Conf. Ser. 1198(3) 032005.
  • García A, Schlangen E. Ven M. And Liu Q., 2009. Electrical Conductivity Of Asphalt Mortar Containing Conductive Fibers And Fillers. Construction And Building Materials, 23, 3175–3181.
  • Gopalakrishnan, K, Ceylan, H. Kim, S, Yang, S. And Abdualla, H., 2015. Electrically Conductive Mortar Characterization For Self Heating Airfield Concrete Pavement Mix Design. International Journal Of Pavement Research And Technology, 8(5), 315-324.
  • Hannant, D. J., 1987. Fiber cements and fiber concrete. Chichester, UK, Wiley.
  • Huang, B.S. Chen, X.W. And Shu, X., 2009. Effects of electrically conductive additives laboratory-measured properties of asphalt mixtures. Journal Of Materials İn Civil Engineering, 21(10), 612–617.
  • Kına, C., 2019. Yüksek Performanslı Kendiliğinden Yerleşen Karma Lifli Beton Geliştirilmesi, Doktora Tezi, İnönü Üniversitesi, Malatya.
  • Liu, X., Wu, T., Yang, X., & Wei, H., 2019. Properties of self-compacting lightweight concrete reinforced with steel and polypropylene fibers. Construction and Building Materials, 226, 388–398.
  • Mobasher B, Li Cheng Y.,1996. Mechanical properties of hybrid cement based composites. American Concrete Institute Materials Journal, 93(3), 284-92, 1996.
  • Nanni, A., 1988. Splitting-tension test for fiber reinforced concrete. ACI Mater J. 85(4), 229–33.
  • Okamura & Quchi, 1999. Self-Compacting Concrete (pp 3-14). Development Present Use and Future. Proceedings of the First International RILEM Symposium. Edited by A. Skarendahland.
  • Pan, P. Wu, S. Xiao, F. Pang, L. And Xiao, Y., 2015, Conductive Asphalt Concrete: A Review On Structure Design, Performance, And Practical Applications. Journal Of Intelligent Material Systems And Structures, 26(7), 755-769.
  • Polder, R.B., 2001. Test Methods For On Site Measurement Of Resistivity Of Concrete. A RILEM TC – 154 Technical Recommendation, Construction And Building Materials, 15, 125-131.
  • Rambo, D. A. S., Silva, F. D. A., Filho, R. D. T., 2014. Mechanical behavior of hybrid steel-fiber self-consoldating concrete: materials and structural aspects. Materials & Design, 54, 32-42.
  • Rossi P., 1997. High performance multimodal fiber reinforced cement composites (HPMFRCC): the LCPC experience. Materials Journal, 94:6, 478- 783.
  • Rossi P., Acker P. & Malier Y., 1987. Effect of steel fibres at two different stages: the material and the structure. Mater Struct., 20, 436–9.
  • S. Cleven , M. Raupach, T. Matschei, 2021. Electrical Resistivity of Steel Fibre-Reinforced Concrete Influencing Parameter. Materials 2021, 14, 3408.
  • S. Kwon, T. Nishiwaki, T. Kikuta, H. Mihashi, 2014. Development of ultra-high performance hybrid fiber-reinforced cement-based composites. ACI Mater. J. 111 (3) 309–318.
  • S. Teng, V. Afroughsabet, C.P. Ostertag, 2018. Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Construction and Building Materials 182 504–515.
  • S.G. Nehme, R. László, A.E. Mir., 2017. Mechanical performance of steel fiber reinforced self-compacting concrete in panels, Procedia Eng. 196 90–96.
  • Sabbağ, N. & Uyanık, O., 2020. Özdirenç yöntemi kullanılarak donatılı betonların anizotropisinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , 26 (3) , 572-580.
  • Song, P. S., & Hwang, S., 2004. Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673.
  • Tabatabaeian, M., Khaloo A., Joshaghani A., Hajibandeh, E., 2017. Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high-strength SCC. Construction and Building Materials, 147, 497–509
  • Tian, X. & Hu, H., 2012. Test and Study on Electrical Property of Conductive Concrete. Procedia Earth and Planetary Science, 5(2011), 83–87.
  • Tuan, C.Y., 2004. Conductive Concrete for Bridge Deck Deicing and Anti-icing, Project No. SPR-PL-1(037) P512, Nebraska Department of Roads, July.
  • Tumidajski P.J., 1997. Electrical conductivity of Portland cement mortars. Cement and Concrete Research, 26(4), 529-534.
  • Turk K., Bassurucu M. and Bitkin RE.,2021. Workability, strength and flexural toughness properties of hybrid steel fiber reinforced SCC with high-volume fiber. Construction and Building Materials, 266, Part A, (10 January 2020), 120944, 2021. https://doi.org/10.1016/j.conbuildmat.2020.120944.
  • Turk K., Kina C. and Oztekin E., 2020. Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC. Advances in Concrete Construction, 10(3), pp. 257-269. DOI: 10.12989/acc.2020.10.3.257
  • Turk, K., Oztekin, E., & Kina, C., 2019. Self-compacting concrete with blended short and long fibres: experimental investigation on the role of fibre blend proportion. European Journal of Environmental and Civil Engineering, 0(0), 1–14.
  • Uygunoğlu, T., topçu, İ.B., şimşek, B., çinar, E., 2018. Kendiliğinden Yerleşen Harçların Elektriksel Özdirenci Üzerine Mineral Katkıların Etkisi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Cilt 22, Sayı 2, 986-992.
  • Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. Carbon dioxide emissions from the global cement industry. Annual review of energy and the environment, 26:1, (2001) 303-329.
  • Yehia, S. and C.Y. Tuan,1999. Conductive concrete overlay for bridge deck deicing. Materials Journal, 1999. 96(3): p. 382-390.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Kazım Türk 0000-0002-6314-9465

Nazlı Çiçek 0000-0002-1605-5212

Metin Katlav 0000-0001-9093-7195

Paki Turgut 0000-0002-3711-4605

Project Number FYL-2020-2148
Publication Date June 30, 2022
Submission Date July 1, 2021
Acceptance Date January 10, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Türk, K., Çiçek, N., Katlav, M., Turgut, P. (2022). KARMA ÇELİK LİFLİ KENDİLİĞİNDEN YERLEŞEN BETONUN ELEKTRİKSEL DİRENCİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(2), 482-494. https://doi.org/10.21923/jesd.960538