Abstract
One of the cognitive characters emphasized by different researchers in mathematically gifted students is generalization of mathematical structures and patterns. In particular, experience with growing geometric patterns is important for initiating and developing algebraic thinking. In this context, this study aimed to explore the generalization strategies used by gifted students in the growing geometric pattern task. The study was designed in a case study. The participants of the study are five eighth grade students who were diagnosed as gifted through diagnostic tests. The data of the study were collected with the "Geometric Pattern Task Form" consisting of open-ended problems. The geometric pattern task consists of linear and quadratic patterns. Data were collected by task-based interview method and analyzed with thematic analysis. The results of the study show that gifted students exhibit figural and numerical approaches while solving pattern problems. In particular, for quadratic (non-linear) pattern, gifted students used functional strategy in all problems of finding near, far terms, and general rule of pattern. However, in the problems of finding the number of white balls (linear pattern), different strategies (e.g., recursive, chunking, contextual) than the functional strategy were also used. Based on the results of the study, it is suggested that geometric pattern tasks involving linear and non-linear relationships may be centralized in the development of functional thinking and generalization skills of gifted students in classroom practices.