Review
BibTex RIS Cite

Soğan Islahında Generasyon İlerlemesi ve Tohum Üretim Sürecini Hızlandırma Teknikleri

Year 2021, , 3438 - 3446, 30.12.2021
https://doi.org/10.21597/jist.1028688

Abstract

Soğan (Allium cepa var. cepa L.) insanlar tarafından kültürü yapılan ilk tarım bitkilerindendir.
Ülkemiz, soğanın birincil gen merkezlerinden birisidir. Binlerce yıldır Anadolu’da soğan tarımı yapılmaktadır.
Soğan, iki yıllık bir sebze olup ilk yıl tohumdan soğan oluşumu gerçekleşir ertesi yıl ise soğandan tekrar tohum
oluşumu sağlanarak yaşam döngüsü tamamlanmaktadır. Soğanın anavatanı olan ve aynı zamanda önemli bir
üretici olan ülkemizde çeşit ıslah çalışmaları yeterli düzeyde değildir. Bunun en önemli nedeni, tek yıllık
sebzelere göre soğanda ıslah sürecinin, neredeyse iki kat daha fazla sürmesidir. Islah kuruluşlarının; uzun süren,
yüksek maliyetli ve yoğun işgücü gerektiren soğan ıslah programları oluşturmaları hiçte kolay olmamaktadır.
Bu nedenle soğan ıslah programlarında tohum üretim süresinin kısaltılması büyük önem taşımaktadır. Son
yıllarda soğan ıslah programlarında farklı agronomik uygulamalar ve vernalizasyon şartları kullanılarak aynı yıl
içerisinde tohum üretimleri gerçekleştirilebilmektedir. Bu sürecin hızlandırılması amacıyla H2O2 gibi bazı
kimyasal uygulamalar yapılmaya başlamıştır. Ayrıca son yıllarda soğanda double haploid ıslah hatlarının elde
edilmesine yönelik olarak olumlu sonuçlar alınmaya başlanmıştır. Bu derleme çalışmasında, soğan ıslah
programlarında sürecin hızlanmasına yönelik olarak uygulanan bu tekniklerin etkileri ve etki mekanizmaları
sunulmuştur.

References

  • Alan AR, Lim W, Mutschler MA, Earle ED, 2007. Complementary Strategies for Ploidy Manipulations in Gynogenic Onion (Allium cepa L.). Plant Science, 173: 25-31.
  • Anonim, 2019a. Crop Production Statistics. Food and Agriculture Organization (FAO). https://www.fao.org/faostat/en/#home (Erişim Tarihi: 13.08.2021).
  • Anonim, 2019b. Bitkisel Üretim İstatistikleri. Türkiye İstatistik Kurumu. https://www.tuik.gov.tr (Erişim Tarihi: 13.08.2021).
  • Anonim, 2021. Standart Tohumluk Kayıtları. Tohumluk Tescil ve Sertifikasyon Merkez Müdürlüğü. https://www.tarimorman.gov.tr/BUGEM/TTSM (Erişim Tarihi: 13.08.2021).
  • Bohanec B, Jakše M, 1999. Variations in Gynogenic Response among Long-Day Onion (Allium cepa L.) Accessions. Plant Cell Reports, 18: 737-742.
  • Bohanec B, Jakše M, Ihan A, Javornik B, 1995. Studies of Gynogenesis in Onion (Allium cepa L.) Induction Procedures and Genetic Analysis of Regenerants. Plant Science, 104: 215-224.
  • Brewster JL, 1983. Effects of Photoperiod, Nitrogen Nutrition and Temperature on Inflorescence Initiation and Development in Onion (Allium cepa L.). Annals of Botany, 51: 429-440.
  • Campion B, Alloni C, 1990. Induction of Haploid Plants in Onion (Allium cepa L.) by in Vitro Culture of Unpollinated Ovules. Plant Cell Tissue Organ Cult, 20: 1–6.
  • Campion B, Azzimonti MT, Vicini E, Schiayi M, Falavigna A, 1992. Advances in Haploid Induction in Onion (Allium cepa L.) through In vitro Gynogenesis. Plant Science, 86: 97-104.
  • Chope GA, Cools K, Terry LA, Hammond JP, Thompson AJ, 2012. Association of Gene Expression Data with Dormancy and Sprout Suppression in Onion Bulbs using a Newly Developed Onion Microarray. In VI International Symposium on Edible Alliaceae 969, pp: 169-174.
  • D’Angelo CJ, Goldman IL, 2018. Temporal Aspects of Vernalization and Flowering in Long-day Storage Onion. Journal of the American Society for Horticultural Science, 143(6): 446-453.
  • D’Angelo CJ, Goldman IL, 2019a. Annualization of the Long Day Onion Breeding Cycle through Threshold Vernalization and Dormancy Disruption. Crop Breeding, Genetics and Genomics, 1, e190009, p: 1-15.
  • D’Angelo CJ, Goldman IL, 2019b. Breaking Onion Bulb Endodormancy with Hydrogen Peroxide. HortScience, 54 (10): 1694-1702.
  • El-Maarouf-Bouteau H, Bailly C, 2008. Oxidative Signaling in Seed Germination and Dormancy. Plant Signaling & Behavior, 3 (3): 175-182.
  • Geoffriau E, Kahane R, Rancillac M, 1997. Variation of Gynogenesis Ability in Onion (Allium cepa L.). Euphytica, 94: 37–44.
  • Heath OVS, Holdsworth M, Tincker MAH, Brown FC, 1947. Studies in the Physiology of the Onion Plant: III. Further Experiments on the Effects of Storage Temperature and other Factors on Onions Grown from Sets. Annals of Applied Biology, 34 (4): 473-502.
  • Heath OVS, Mathur PB, 1944. Studies in the Physiology of the Onion Plant: II. Inflorescence Initiation and Development, and Other Changes in the Internal Morphology of Onion Sets, as Influenced by Temperature and Day Length. Annals of Applied Biology, 31 (3): 173-186.
  • Jakše M, Bohanec B, Ihan A, 1996. Effect of Media Components on the Gynogenic Regeneration of Onion (Allium cepa L.) Cultivars and Analysis of Regenerants. Plant Cell Reports, 15: 934–938.
  • Jakše M, Hirschegger P, Bohanec B, Havey MJ, 2010. Evaluation of Gynogenic Responsiveness and Pollen Viability of Selfed Doubled Haploid Onion Lines and Chromosome Doubling via Somatic Regeneration. Journal of the American Society for Horticultural Science, 135: 67-73.
  • Jones HA, Davis GN, 1944. Inbreeding and Heterosis and their Relation to the Development of New Varieties of Onions. United States Department of Agriculture Washington D.C. Technical Bulletin No:874 August 1944, p: 1-28.
  • Khokhar KM, Hadley P, Pearson S, 2007. Effect of Cold Temperature Durations of Onion Sets in Store on the Incidence of Bolting, Bulbing and Seed Yield. Scientia Horticulturae, 112 (1): 16-22.
  • Khokhar KM, 2009. Effect of Set-Size and Storage Temperature on Bolting, Bulbing and Seed Yield in Two Onion Cultivars. Scientia Horticulturae, 122 (2): 187-194.
  • Krawiec M, 2007. Effect of Storage Duration and Temperature on Sets Loss and Bolting of Onion. Vegetable Crops Research Bulletin, 66: 47.
  • Lawadale KE, Kale PN, 1986. Effect of Monthly Planting Round the Year on Yield, Bolting, Self-Topping and Twin Bulb Formation in Onions. Journal of Maharashtra Agricultural Universities, 11: 167-170.
  • Liu X, Deng Z, Cheng H, He X, Song S, 2011. Nitrite, Sodium Nitroprusside, Potassium Ferricyanide and Hydrogen Peroxide Release Dormancy of Amaranthus retroflexus Seeds in a Nitric Oxide-Dependent Manner. Plant Growth Regulation, 64: 155-161.
  • Martinez LE, Augero CB, Lopez ME, Galmarini CR, 2000. Improvement of in vitro Gynogenesis Induction in Onion (Allium cepa L.) using Polyamines. Plant Science, 156: 221-226.
  • Michalik B, Adamus A, Nowak E, 2000. Gynogenesis in Polish Onion Cultivars. Journal of Plant Physiology, 156: 211–216.
  • Mohamed HB, Vadel AM, Geuns JMC, Khemira H, 2012. Effects of Hydrogen Cyanamide on Antioxidant Enzymes’ Activity, Proline and Polyamine Contents during Bud Dormancy Release in Superior Seedless Grapevine Buds. Acta Physiologiae Plantarum, 34: 429–437.
  • Musial K, Bohanec B, Jakše M, Przywara L, 2005. The Development of Onion (Allium cepa L.) Embryo sacs in vitro and Gynogenesis Induction in Relation to Flower Size. In Vitro Cellular & Developmental Biology Plant, 41 (4): 446-452.
  • Peluffo S, Gonzalez Idiarte H, Borges A, Arboleya J, Galvan GA, 2016. Onion Sets as Planting Material for Seed Production of Three Cultivars in Uruguay. Seed Science and Technology, 44 (3): 500-513.
  • Peters R, 2018. Seed Production in Onions and Some Other Allium Species. In Onions and Allied Crops. CRC Press, pp. 161-176, Boca Raton-USA.
  • Ponce M, Martinez L, Galmarini CR, 2006. Influence of CCC, Putrescine and Gellam Gum Concentration on Gynogenic Embryo Induction in Allium cepa. Biologia Plantarum, 50 (3): 425-428.
  • Puddephat IJ, Robinson HT, Smith BM, Lynn J, 1999. Influence of Stock Plant Pre-treatment on Gynogenic Embryo Induction from Flower Buds of Onion. Plant Cell, Tissue and Organ Culture, 57 (2): 145-148.
  • Shishido Y, Saito T, 1975. Studies on the Flower Bud Formation in Onion Plants. I. Effects of Temperature, Photoperiod and Light Intensity on the Low Temperature Induction of Flower Buds. Journal of Japanese Society for Horticultural Science, 44 (2): 122-130.
  • Shishido Y, Saito T, 1976. Studies on the Flower Bud Formation in Onion Plants. II. Effects of Physiological Conditions on the Low Temperature IFInduction of Flower Bud on Green Plants. Journal of the Japanese Society for Horticultural Science, 45 (2): 160-167.
  • Streck NA, 2003. A Vernalization Model in Onion (Allium cepa L.). Revista Brasileira Agrociência, 9(2): 99-105.
  • Van Kampen J, 1970. Shortening the Breeding Cycle in Onions. Journal Meded Proefstat Groent, 51: 1-69 (In Dutch).

Accelerating Generation Advance and Shortening Seed Production Duration Techniques in Onion Breeding

Year 2021, , 3438 - 3446, 30.12.2021
https://doi.org/10.21597/jist.1028688

Abstract

Onion (Allium cepa var. cepa L.) is one of the first agricultural plants cultivated by humans.
Turkey is one of the primary gene centers of onion. Onion has been cultivated in Anatolia for thousands of
years. Onion, which is a biannual vegetable, completes its life cycle by forming an onion from the seed in the
first year and a seed from the onion in the second year. Although Turkey, which is the gene centre of onions, is
also an important producer, variety breeding studies are not sufficient. The most important reason for this is that
the breeding process for onions takes almost twice as long as for annual vegetables. It is not easy for breeding
companies to create onion breeding programs that take many years, require high cost and labour intensive.
Therefore, shortening the seed production period is of great importance in onion breeding programs. In recent
years, seed can be produced in the same year by using different agronomic practices and vernalisation
conditions in onion breeding programs. Some chemical applications such as H2O2 have been started to
accelerate this process. In addition, in recent years, good results have begun to be obtained for the production of
double haploid breeding lines in onions. In this review, the effects of these techniques applied and their
mechanisms to accelerate the process in onion breeding programs are presented.

References

  • Alan AR, Lim W, Mutschler MA, Earle ED, 2007. Complementary Strategies for Ploidy Manipulations in Gynogenic Onion (Allium cepa L.). Plant Science, 173: 25-31.
  • Anonim, 2019a. Crop Production Statistics. Food and Agriculture Organization (FAO). https://www.fao.org/faostat/en/#home (Erişim Tarihi: 13.08.2021).
  • Anonim, 2019b. Bitkisel Üretim İstatistikleri. Türkiye İstatistik Kurumu. https://www.tuik.gov.tr (Erişim Tarihi: 13.08.2021).
  • Anonim, 2021. Standart Tohumluk Kayıtları. Tohumluk Tescil ve Sertifikasyon Merkez Müdürlüğü. https://www.tarimorman.gov.tr/BUGEM/TTSM (Erişim Tarihi: 13.08.2021).
  • Bohanec B, Jakše M, 1999. Variations in Gynogenic Response among Long-Day Onion (Allium cepa L.) Accessions. Plant Cell Reports, 18: 737-742.
  • Bohanec B, Jakše M, Ihan A, Javornik B, 1995. Studies of Gynogenesis in Onion (Allium cepa L.) Induction Procedures and Genetic Analysis of Regenerants. Plant Science, 104: 215-224.
  • Brewster JL, 1983. Effects of Photoperiod, Nitrogen Nutrition and Temperature on Inflorescence Initiation and Development in Onion (Allium cepa L.). Annals of Botany, 51: 429-440.
  • Campion B, Alloni C, 1990. Induction of Haploid Plants in Onion (Allium cepa L.) by in Vitro Culture of Unpollinated Ovules. Plant Cell Tissue Organ Cult, 20: 1–6.
  • Campion B, Azzimonti MT, Vicini E, Schiayi M, Falavigna A, 1992. Advances in Haploid Induction in Onion (Allium cepa L.) through In vitro Gynogenesis. Plant Science, 86: 97-104.
  • Chope GA, Cools K, Terry LA, Hammond JP, Thompson AJ, 2012. Association of Gene Expression Data with Dormancy and Sprout Suppression in Onion Bulbs using a Newly Developed Onion Microarray. In VI International Symposium on Edible Alliaceae 969, pp: 169-174.
  • D’Angelo CJ, Goldman IL, 2018. Temporal Aspects of Vernalization and Flowering in Long-day Storage Onion. Journal of the American Society for Horticultural Science, 143(6): 446-453.
  • D’Angelo CJ, Goldman IL, 2019a. Annualization of the Long Day Onion Breeding Cycle through Threshold Vernalization and Dormancy Disruption. Crop Breeding, Genetics and Genomics, 1, e190009, p: 1-15.
  • D’Angelo CJ, Goldman IL, 2019b. Breaking Onion Bulb Endodormancy with Hydrogen Peroxide. HortScience, 54 (10): 1694-1702.
  • El-Maarouf-Bouteau H, Bailly C, 2008. Oxidative Signaling in Seed Germination and Dormancy. Plant Signaling & Behavior, 3 (3): 175-182.
  • Geoffriau E, Kahane R, Rancillac M, 1997. Variation of Gynogenesis Ability in Onion (Allium cepa L.). Euphytica, 94: 37–44.
  • Heath OVS, Holdsworth M, Tincker MAH, Brown FC, 1947. Studies in the Physiology of the Onion Plant: III. Further Experiments on the Effects of Storage Temperature and other Factors on Onions Grown from Sets. Annals of Applied Biology, 34 (4): 473-502.
  • Heath OVS, Mathur PB, 1944. Studies in the Physiology of the Onion Plant: II. Inflorescence Initiation and Development, and Other Changes in the Internal Morphology of Onion Sets, as Influenced by Temperature and Day Length. Annals of Applied Biology, 31 (3): 173-186.
  • Jakše M, Bohanec B, Ihan A, 1996. Effect of Media Components on the Gynogenic Regeneration of Onion (Allium cepa L.) Cultivars and Analysis of Regenerants. Plant Cell Reports, 15: 934–938.
  • Jakše M, Hirschegger P, Bohanec B, Havey MJ, 2010. Evaluation of Gynogenic Responsiveness and Pollen Viability of Selfed Doubled Haploid Onion Lines and Chromosome Doubling via Somatic Regeneration. Journal of the American Society for Horticultural Science, 135: 67-73.
  • Jones HA, Davis GN, 1944. Inbreeding and Heterosis and their Relation to the Development of New Varieties of Onions. United States Department of Agriculture Washington D.C. Technical Bulletin No:874 August 1944, p: 1-28.
  • Khokhar KM, Hadley P, Pearson S, 2007. Effect of Cold Temperature Durations of Onion Sets in Store on the Incidence of Bolting, Bulbing and Seed Yield. Scientia Horticulturae, 112 (1): 16-22.
  • Khokhar KM, 2009. Effect of Set-Size and Storage Temperature on Bolting, Bulbing and Seed Yield in Two Onion Cultivars. Scientia Horticulturae, 122 (2): 187-194.
  • Krawiec M, 2007. Effect of Storage Duration and Temperature on Sets Loss and Bolting of Onion. Vegetable Crops Research Bulletin, 66: 47.
  • Lawadale KE, Kale PN, 1986. Effect of Monthly Planting Round the Year on Yield, Bolting, Self-Topping and Twin Bulb Formation in Onions. Journal of Maharashtra Agricultural Universities, 11: 167-170.
  • Liu X, Deng Z, Cheng H, He X, Song S, 2011. Nitrite, Sodium Nitroprusside, Potassium Ferricyanide and Hydrogen Peroxide Release Dormancy of Amaranthus retroflexus Seeds in a Nitric Oxide-Dependent Manner. Plant Growth Regulation, 64: 155-161.
  • Martinez LE, Augero CB, Lopez ME, Galmarini CR, 2000. Improvement of in vitro Gynogenesis Induction in Onion (Allium cepa L.) using Polyamines. Plant Science, 156: 221-226.
  • Michalik B, Adamus A, Nowak E, 2000. Gynogenesis in Polish Onion Cultivars. Journal of Plant Physiology, 156: 211–216.
  • Mohamed HB, Vadel AM, Geuns JMC, Khemira H, 2012. Effects of Hydrogen Cyanamide on Antioxidant Enzymes’ Activity, Proline and Polyamine Contents during Bud Dormancy Release in Superior Seedless Grapevine Buds. Acta Physiologiae Plantarum, 34: 429–437.
  • Musial K, Bohanec B, Jakše M, Przywara L, 2005. The Development of Onion (Allium cepa L.) Embryo sacs in vitro and Gynogenesis Induction in Relation to Flower Size. In Vitro Cellular & Developmental Biology Plant, 41 (4): 446-452.
  • Peluffo S, Gonzalez Idiarte H, Borges A, Arboleya J, Galvan GA, 2016. Onion Sets as Planting Material for Seed Production of Three Cultivars in Uruguay. Seed Science and Technology, 44 (3): 500-513.
  • Peters R, 2018. Seed Production in Onions and Some Other Allium Species. In Onions and Allied Crops. CRC Press, pp. 161-176, Boca Raton-USA.
  • Ponce M, Martinez L, Galmarini CR, 2006. Influence of CCC, Putrescine and Gellam Gum Concentration on Gynogenic Embryo Induction in Allium cepa. Biologia Plantarum, 50 (3): 425-428.
  • Puddephat IJ, Robinson HT, Smith BM, Lynn J, 1999. Influence of Stock Plant Pre-treatment on Gynogenic Embryo Induction from Flower Buds of Onion. Plant Cell, Tissue and Organ Culture, 57 (2): 145-148.
  • Shishido Y, Saito T, 1975. Studies on the Flower Bud Formation in Onion Plants. I. Effects of Temperature, Photoperiod and Light Intensity on the Low Temperature Induction of Flower Buds. Journal of Japanese Society for Horticultural Science, 44 (2): 122-130.
  • Shishido Y, Saito T, 1976. Studies on the Flower Bud Formation in Onion Plants. II. Effects of Physiological Conditions on the Low Temperature IFInduction of Flower Bud on Green Plants. Journal of the Japanese Society for Horticultural Science, 45 (2): 160-167.
  • Streck NA, 2003. A Vernalization Model in Onion (Allium cepa L.). Revista Brasileira Agrociência, 9(2): 99-105.
  • Van Kampen J, 1970. Shortening the Breeding Cycle in Onions. Journal Meded Proefstat Groent, 51: 1-69 (In Dutch).
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Horticultural Production
Journal Section Bahçe Bitkileri / Horticulture
Authors

Arif Bağcı 0000-0001-9604-219X

Onur Karaağaç 0000-0002-8794-2556

Ahmet Balkaya 0000-0001-9114-615X

Publication Date December 30, 2021
Submission Date November 26, 2021
Acceptance Date December 9, 2021
Published in Issue Year 2021

Cite

APA Bağcı, A., Karaağaç, O., & Balkaya, A. (2021). Soğan Islahında Generasyon İlerlemesi ve Tohum Üretim Sürecini Hızlandırma Teknikleri. Journal of the Institute of Science and Technology, 11(özel sayı), 3438-3446. https://doi.org/10.21597/jist.1028688
AMA Bağcı A, Karaağaç O, Balkaya A. Soğan Islahında Generasyon İlerlemesi ve Tohum Üretim Sürecini Hızlandırma Teknikleri. Iğdır Üniv. Fen Bil Enst. Der. December 2021;11(özel sayı):3438-3446. doi:10.21597/jist.1028688
Chicago Bağcı, Arif, Onur Karaağaç, and Ahmet Balkaya. “Soğan Islahında Generasyon İlerlemesi Ve Tohum Üretim Sürecini Hızlandırma Teknikleri”. Journal of the Institute of Science and Technology 11, no. özel sayı (December 2021): 3438-46. https://doi.org/10.21597/jist.1028688.
EndNote Bağcı A, Karaağaç O, Balkaya A (December 1, 2021) Soğan Islahında Generasyon İlerlemesi ve Tohum Üretim Sürecini Hızlandırma Teknikleri. Journal of the Institute of Science and Technology 11 özel sayı 3438–3446.
IEEE A. Bağcı, O. Karaağaç, and A. Balkaya, “Soğan Islahında Generasyon İlerlemesi ve Tohum Üretim Sürecini Hızlandırma Teknikleri”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. özel sayı, pp. 3438–3446, 2021, doi: 10.21597/jist.1028688.
ISNAD Bağcı, Arif et al. “Soğan Islahında Generasyon İlerlemesi Ve Tohum Üretim Sürecini Hızlandırma Teknikleri”. Journal of the Institute of Science and Technology 11/özel sayı (December 2021), 3438-3446. https://doi.org/10.21597/jist.1028688.
JAMA Bağcı A, Karaağaç O, Balkaya A. Soğan Islahında Generasyon İlerlemesi ve Tohum Üretim Sürecini Hızlandırma Teknikleri. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:3438–3446.
MLA Bağcı, Arif et al. “Soğan Islahında Generasyon İlerlemesi Ve Tohum Üretim Sürecini Hızlandırma Teknikleri”. Journal of the Institute of Science and Technology, vol. 11, no. özel sayı, 2021, pp. 3438-46, doi:10.21597/jist.1028688.
Vancouver Bağcı A, Karaağaç O, Balkaya A. Soğan Islahında Generasyon İlerlemesi ve Tohum Üretim Sürecini Hızlandırma Teknikleri. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(özel sayı):3438-46.