Research Article
BibTex RIS Cite

Mini Gaz Türbini (MGT) Motorunda Aspir Metil Ester-Jet A1 Karışımlarının Kullanımının Performans ve Emisyonlara Etkisinin Araştırılması

Year 2024, , 377 - 389, 01.03.2024
https://doi.org/10.21597/jist.1375703

Abstract

Bu çalışma, Aspir Metil Esteri-Jet A1 karışımının küçük ölçekli bir jet motorunun itme performansı, yakıt tüketimi ve kirletici emisyonları üzerindeki etkisinin ve ayrıca Jet A1 yakıtına aspir metil esterinin (SME) alternatifinin araştırılmasına odaklanmıştır. Deneyler, Jet A1 ile aspir yağından üretilen yakıtın karıştırılmasıyla elde edilen biyojet yakıtlarının bir jet motorunun taksi, yaklaşma, tırmanma ve kalkış güç çevrimlerinde kullanılmasıyla gerçekleştirilmiştir. Uçağın gerçek çalışma şartlarındaki yüzde güç değerlerinden elde edilen her iki yakıt tipinin itme kuvvetleri belirlenmiş ve buna göre CO, HC, CO2 emisyonları, yakıt tüketimi ve egzoz gazı sıcaklığı ölçümleri yapılmıştır. Yapılan ölçümler sonucunda biyojet kullanımıyla itkide yaklaşık %27.5 oranında azalma görülmüştür. Ayrıca HC emisyonları %51’e kadar azalırken CO emisyonu düşük devirlerde birbirine daha yakınken tam güçte % 30 artmıştır. Metil esterin CO2 emisyonu devir değişikliğine göre % 8-16 arası artış gösterirken, yakıt tüketimi düşük devirlerde kabul edilebilir düzeyde iken tam güçte % 50’yi aşmıştır.

References

  • Akinyemi, O. S., Jiang, L., Hernandez, R., McIntyre, C., & Holmes, W. (2019). Combustion of straight algae oil in a swirl-stabilized burner using a novel twin-fluid injector. Fuel, 241, 176-187.
  • Albisinni, F. G. (2016). The Rise of Global Standards: ICAO's Standards and Recommended Practices. Italian J. Pub. L., 8, 203.
  • Allouis, C., Beretta, F., Minutolo, P., Pagliara, R., Sirignano, M., Sgro, L., & D’Anna, A. (2010). Measurements of ultrafine particles from a gas-turbine burning biofuels. Experimental thermal and fluid science, 34(3), 258-261. doi:DOI: 10.1016/J.EXPTHERMFLUSCI.2009.10.034
  • Chiaramonti, D., Rizzo, A. M., Spadi, A., Prussi, M., Riccio, G., & Martelli, F. (2013). Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil. Applied energy, 101, 349-356. doi:DOI: 10.1016/j.apenergy.2012.01.066
  • Chilongola, F., & Ahyudanari, E. (2019). Aviation and aircraft engine emissions at Juanda International Airport. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Chong, C. T., & Hochgreb, S. (2014). Spray flame structure of rapeseed biodiesel and Jet-A1 fuel. Fuel, 115, 551-558. doi:https://doi.org/10.1016/j.fuel.2013.07.059
  • Corporan, E., Reich, R., Monroig, O., DeWitt, M. J., Larson, V., Aulich, T., . . . Seames, W. (2005). Impacts of biodiesel on pollutant emissions of a JP-8–fueled turbine engine. Journal of the Air & Waste Management Association, 55(7), 940-949. doi:DOI: 10.1080/10473289.2005.10464680
  • EL-Zohairy, R. M., Attia, A. S., Huzayyin, A., & EL-Seesy, A. I. (2023). Effect of diethyl ether addition to waste cooking oil biodiesel on the combustion and emission characteristics of a swirl-stabilized premixed flame. Energy Conversion and Management, 286, 117052.
  • El-Zoheiry, R. M., EL-Seesy, A. I., Attia, A. M., He, Z., & El-Batsh, H. M. (2020). Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation. Renewable Energy, 162, 2227-2245. doi:DOI: 10.1016/j.renene.2020.10.031
  • Enagi, I. I., Al-Attab, K., & Zainal, Z. (2018). Liquid biofuels utilization for gas turbines: a review. Renewable and Sustainable Energy Reviews, 90, 43-55. doi:DOI: 10.1016/j.rser.2018.03.006
  • Gupta, K. K., Rehman, A., & Sarviya, R. (2010). Bio-fuels for the gas turbine: A review. Renewable and Sustainable Energy Reviews, 14(9), 2946-2955. doi:https://doi.org/10.1016/j.rser.2010.07.025
  • Habib, Z., Parthasarathy, R., & Gollahalli, S. (2010). Performance and emission characteristics of biofuel in a small-scale gas turbine engine. Applied energy, 87(5), 1701-1709.
  • Hemighaus, G., Boval, T., Bosley, C., Organ, R., Lind, J., Brouette, R., . . . Jones, J. (2006). Alternative jet fuels. Chevron Corporation. Addendum, 1.
  • Hespanhol, R. M., de Sá, R. M., & Fortes, J. A. A. S. (2014). Impact of an Emission-Mitigating Action In SÃO PAULO’s Congonhas Airport (BRAZIL). XIII SITRAER – AIR TRANSPORTATION SYMPOSIUM, 11.
  • Holman, J. P. (2001). Experimental methods for engineers.
  • Killol, A., Reddy, N., Paruvada, S., & Murugan, S. (2019). Experimental studies of a diesel engine run on biodiesel n-butanol blends. Renewable Energy, 135, 687-700.
  • Knothe, G., & Razon, L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58, 36-59. doi:https://doi.org/10.1016/j.pecs.2016.08.001
  • Kumar, M., & Karmakar, S. (2020). Combustion characteristics of butanol, butyl butyrate, and Jet A-1 in a swirl-stabilized combustor. Fuel, 281, 118743.
  • Kumar, M., Karmakar, S., & Nimesh, V. (2024). Statistical investigation of combustion and emission characteristics of biofuels according to their physical properties: A way to explore suitable alternative fuels. Fuel, 358, 130242.
  • Lupandin, V., Thamburaj, R., & Nikolayev, A. (2005). Test results of the OGT2500 gas turbine engine running on alternative fuels: biooil, ethanol, biodiesel and crude oil. Paper presented at the Turbo Expo: Power for Land, Sea, and Air.
  • Manigandan, S., Atabani, A., Ponnusamy, V. K., & Gunasekar, P. (2020). Impact of additives in Jet-A fuel blends on combustion, emission and exergetic analysis using a micro-gas turbine engine. Fuel, 276, 118104. doi:https://doi.org/10.1016/j.fuel.2020.118104
  • Masiol, M., & Harrison, R. M. (2014). Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmospheric Environment, 95, 409-455.
  • Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D’Ascoli, E., Kim, J., . . . Beyersdorf, A. J. (2017). Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature, 543(7645), 411-415. doi:DOI: 10.1038/nature21420
  • Nascimento, M. A., Lora, E. S., Corrêa, P. S., Andrade, R. V., Rendon, M. A., Venturini, O. J., & Ramirez, G. A. (2008). Biodiesel fuel in diesel micro-turbine engines: Modelling and experimental evaluation. Energy, 33(2), 233-240. doi:https://doi.org/10.1016/j.energy.2007.07.014
  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52-68. doi:https://doi.org/10.1016/j.pecs.2010.01.003
  • Özçelik, A. E., Aydoğan, H., & Acaroğlu, M. (2015). Determining the performance, emission and combustion properties of camelina biodiesel blends. Energy Conversion and Management, 96, 47-57.
  • Pratap Singh, A., & Agarwal, A. K. (2016). Diesoline, diesohol, and diesosene fuelled HCCI engine development. Journal of Energy Resources Technology, 138(5), 052212.
  • Rehan, M., Gardy, J., Demirbas, A., Rashid, U., Budzianowski, W., Pant, D., & Nizami, A. (2018). Waste to biodiesel: A preliminary assessment for Saudi Arabia. Bioresource technology, 250, 17-25. doi:https://doi.org/10.1016/j.biortech.2017.11.024
  • Sani, R. (2018). Biorefining of Biomass to Biofuels: Opportunities and Perception. In: Springer: Berlin/Heidelberg, Germany.
  • Sarıkoç, S., Ünalan, S., & Örs, İ. (2019). Experimental study of hydrogen addition on waste cooking oil biodiesel-diesel-butanol fuel blends in a DI diesel engine. BioEnergy Research, 12, 443-456.
  • Sundararaj, R. H., Kumar, R. D., Raut, A. K., Sekar, T. C., Pandey, V., Kushari, A., & Puri, S. (2019). Combustion and emission characteristics from biojet fuel blends in a gas turbine combustor. Energy, 182, 689-705.
  • Talero, G., Bayona-Roa, C., Silva, V., Mayorga, M., Pava, J., & Lopez, M. (2020). Biodiesel substitution in a J69 aeronautic turbine engine: An experimental assessment of the effects on energy efficiency, technical performance and emissions. Sustainable Energy Technologies and Assessments, 40, 100746. doi:https://doi.org/10.1016/j.seta.2020.100746
  • Tasca, A. L., Cipolla, V., Abu Salem, K., & Puccini, M. (2021). Innovative box-wing aircraft: Emissions and climate change. Sustainability, 13(6), 3282.
  • Wang, Z., Feser, J. S., Lei, T., & Gupta, A. K. (2020). Performance and emissions of camelina oil derived jet fuel blends under distributed combustion condition. Fuel, 271, 117685. doi:https://doi.org/10.1016/j.fuel.2020.117685
  • Xue, X., Hui, X., Singh, P., & Sung, C.-J. (2017). Soot formation in non-premixed counterflow flames of conventional and alternative jet fuels. Fuel, 210, 343-351.
  • Yunos, S. N. M. M., Ghafir, M. F. A., & Wahab, A. A. (2017). Aircraft LTO emissions regulations and implementations at European airports. Paper presented at the AIP Conference Proceedings.
  • Živković, S. B., Veljković, M. V., Banković-Ilić, I. B., Krstić, I. M., Konstantinović, S. S., Ilić, S. B., . . . Veljković, V. B. (2017). Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renewable and Sustainable Energy Reviews, 79, 222-247. doi:https://doi.org/10.1016/j.rser.2017.05.048

Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine

Year 2024, , 377 - 389, 01.03.2024
https://doi.org/10.21597/jist.1375703

Abstract

This study focused on the investigation of the effect of the SME-Jet A1 mixture on the thrust performance, fuel consumption and pollutant emissions of a small-scale jet engine, also the alternative of safflower methyl ester (SME) to Jet A1 fuel. The experiments were carried out by using bio jet fuels obtained by mixing Jet A1 and the fuel produced from safflower oil in taxi, approach, climb and take-off power cycles of a jet engine. The thrust forces of both types of fuel obtained from the percentage power values of the aircraft under real operating conditions were determined and accordingly CO, HC, CO2 emissions, fuel consumption and exhaust gas temperature measurements were made. As a result of the measurements, approximately 27.5% reduction in thrust was observed with the use of biojet. In addition, HC emissions decreased by up to 51%, while CO emissions increased by 30% at take off while being closer to each other at low rpm. While the CO2 emissions of methyl ester increased by 8-16% depending on the speed change, fuel consumption, while at an acceptable level at low rpm, exceeded 50% at take off.

Thanks

The authors acknowledge the financial support provided by Muson Makine Ltd. Şti.

References

  • Akinyemi, O. S., Jiang, L., Hernandez, R., McIntyre, C., & Holmes, W. (2019). Combustion of straight algae oil in a swirl-stabilized burner using a novel twin-fluid injector. Fuel, 241, 176-187.
  • Albisinni, F. G. (2016). The Rise of Global Standards: ICAO's Standards and Recommended Practices. Italian J. Pub. L., 8, 203.
  • Allouis, C., Beretta, F., Minutolo, P., Pagliara, R., Sirignano, M., Sgro, L., & D’Anna, A. (2010). Measurements of ultrafine particles from a gas-turbine burning biofuels. Experimental thermal and fluid science, 34(3), 258-261. doi:DOI: 10.1016/J.EXPTHERMFLUSCI.2009.10.034
  • Chiaramonti, D., Rizzo, A. M., Spadi, A., Prussi, M., Riccio, G., & Martelli, F. (2013). Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil. Applied energy, 101, 349-356. doi:DOI: 10.1016/j.apenergy.2012.01.066
  • Chilongola, F., & Ahyudanari, E. (2019). Aviation and aircraft engine emissions at Juanda International Airport. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Chong, C. T., & Hochgreb, S. (2014). Spray flame structure of rapeseed biodiesel and Jet-A1 fuel. Fuel, 115, 551-558. doi:https://doi.org/10.1016/j.fuel.2013.07.059
  • Corporan, E., Reich, R., Monroig, O., DeWitt, M. J., Larson, V., Aulich, T., . . . Seames, W. (2005). Impacts of biodiesel on pollutant emissions of a JP-8–fueled turbine engine. Journal of the Air & Waste Management Association, 55(7), 940-949. doi:DOI: 10.1080/10473289.2005.10464680
  • EL-Zohairy, R. M., Attia, A. S., Huzayyin, A., & EL-Seesy, A. I. (2023). Effect of diethyl ether addition to waste cooking oil biodiesel on the combustion and emission characteristics of a swirl-stabilized premixed flame. Energy Conversion and Management, 286, 117052.
  • El-Zoheiry, R. M., EL-Seesy, A. I., Attia, A. M., He, Z., & El-Batsh, H. M. (2020). Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation. Renewable Energy, 162, 2227-2245. doi:DOI: 10.1016/j.renene.2020.10.031
  • Enagi, I. I., Al-Attab, K., & Zainal, Z. (2018). Liquid biofuels utilization for gas turbines: a review. Renewable and Sustainable Energy Reviews, 90, 43-55. doi:DOI: 10.1016/j.rser.2018.03.006
  • Gupta, K. K., Rehman, A., & Sarviya, R. (2010). Bio-fuels for the gas turbine: A review. Renewable and Sustainable Energy Reviews, 14(9), 2946-2955. doi:https://doi.org/10.1016/j.rser.2010.07.025
  • Habib, Z., Parthasarathy, R., & Gollahalli, S. (2010). Performance and emission characteristics of biofuel in a small-scale gas turbine engine. Applied energy, 87(5), 1701-1709.
  • Hemighaus, G., Boval, T., Bosley, C., Organ, R., Lind, J., Brouette, R., . . . Jones, J. (2006). Alternative jet fuels. Chevron Corporation. Addendum, 1.
  • Hespanhol, R. M., de Sá, R. M., & Fortes, J. A. A. S. (2014). Impact of an Emission-Mitigating Action In SÃO PAULO’s Congonhas Airport (BRAZIL). XIII SITRAER – AIR TRANSPORTATION SYMPOSIUM, 11.
  • Holman, J. P. (2001). Experimental methods for engineers.
  • Killol, A., Reddy, N., Paruvada, S., & Murugan, S. (2019). Experimental studies of a diesel engine run on biodiesel n-butanol blends. Renewable Energy, 135, 687-700.
  • Knothe, G., & Razon, L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58, 36-59. doi:https://doi.org/10.1016/j.pecs.2016.08.001
  • Kumar, M., & Karmakar, S. (2020). Combustion characteristics of butanol, butyl butyrate, and Jet A-1 in a swirl-stabilized combustor. Fuel, 281, 118743.
  • Kumar, M., Karmakar, S., & Nimesh, V. (2024). Statistical investigation of combustion and emission characteristics of biofuels according to their physical properties: A way to explore suitable alternative fuels. Fuel, 358, 130242.
  • Lupandin, V., Thamburaj, R., & Nikolayev, A. (2005). Test results of the OGT2500 gas turbine engine running on alternative fuels: biooil, ethanol, biodiesel and crude oil. Paper presented at the Turbo Expo: Power for Land, Sea, and Air.
  • Manigandan, S., Atabani, A., Ponnusamy, V. K., & Gunasekar, P. (2020). Impact of additives in Jet-A fuel blends on combustion, emission and exergetic analysis using a micro-gas turbine engine. Fuel, 276, 118104. doi:https://doi.org/10.1016/j.fuel.2020.118104
  • Masiol, M., & Harrison, R. M. (2014). Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmospheric Environment, 95, 409-455.
  • Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D’Ascoli, E., Kim, J., . . . Beyersdorf, A. J. (2017). Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature, 543(7645), 411-415. doi:DOI: 10.1038/nature21420
  • Nascimento, M. A., Lora, E. S., Corrêa, P. S., Andrade, R. V., Rendon, M. A., Venturini, O. J., & Ramirez, G. A. (2008). Biodiesel fuel in diesel micro-turbine engines: Modelling and experimental evaluation. Energy, 33(2), 233-240. doi:https://doi.org/10.1016/j.energy.2007.07.014
  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52-68. doi:https://doi.org/10.1016/j.pecs.2010.01.003
  • Özçelik, A. E., Aydoğan, H., & Acaroğlu, M. (2015). Determining the performance, emission and combustion properties of camelina biodiesel blends. Energy Conversion and Management, 96, 47-57.
  • Pratap Singh, A., & Agarwal, A. K. (2016). Diesoline, diesohol, and diesosene fuelled HCCI engine development. Journal of Energy Resources Technology, 138(5), 052212.
  • Rehan, M., Gardy, J., Demirbas, A., Rashid, U., Budzianowski, W., Pant, D., & Nizami, A. (2018). Waste to biodiesel: A preliminary assessment for Saudi Arabia. Bioresource technology, 250, 17-25. doi:https://doi.org/10.1016/j.biortech.2017.11.024
  • Sani, R. (2018). Biorefining of Biomass to Biofuels: Opportunities and Perception. In: Springer: Berlin/Heidelberg, Germany.
  • Sarıkoç, S., Ünalan, S., & Örs, İ. (2019). Experimental study of hydrogen addition on waste cooking oil biodiesel-diesel-butanol fuel blends in a DI diesel engine. BioEnergy Research, 12, 443-456.
  • Sundararaj, R. H., Kumar, R. D., Raut, A. K., Sekar, T. C., Pandey, V., Kushari, A., & Puri, S. (2019). Combustion and emission characteristics from biojet fuel blends in a gas turbine combustor. Energy, 182, 689-705.
  • Talero, G., Bayona-Roa, C., Silva, V., Mayorga, M., Pava, J., & Lopez, M. (2020). Biodiesel substitution in a J69 aeronautic turbine engine: An experimental assessment of the effects on energy efficiency, technical performance and emissions. Sustainable Energy Technologies and Assessments, 40, 100746. doi:https://doi.org/10.1016/j.seta.2020.100746
  • Tasca, A. L., Cipolla, V., Abu Salem, K., & Puccini, M. (2021). Innovative box-wing aircraft: Emissions and climate change. Sustainability, 13(6), 3282.
  • Wang, Z., Feser, J. S., Lei, T., & Gupta, A. K. (2020). Performance and emissions of camelina oil derived jet fuel blends under distributed combustion condition. Fuel, 271, 117685. doi:https://doi.org/10.1016/j.fuel.2020.117685
  • Xue, X., Hui, X., Singh, P., & Sung, C.-J. (2017). Soot formation in non-premixed counterflow flames of conventional and alternative jet fuels. Fuel, 210, 343-351.
  • Yunos, S. N. M. M., Ghafir, M. F. A., & Wahab, A. A. (2017). Aircraft LTO emissions regulations and implementations at European airports. Paper presented at the AIP Conference Proceedings.
  • Živković, S. B., Veljković, M. V., Banković-Ilić, I. B., Krstić, I. M., Konstantinović, S. S., Ilić, S. B., . . . Veljković, V. B. (2017). Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renewable and Sustainable Energy Reviews, 79, 222-247. doi:https://doi.org/10.1016/j.rser.2017.05.048
There are 37 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Mustafa Taşyürek 0000-0001-9016-8584

Soner Şen 0000-0003-3385-5577

Early Pub Date February 20, 2024
Publication Date March 1, 2024
Submission Date October 13, 2023
Acceptance Date January 2, 2024
Published in Issue Year 2024

Cite

APA Taşyürek, M., & Şen, S. (2024). Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine. Journal of the Institute of Science and Technology, 14(1), 377-389. https://doi.org/10.21597/jist.1375703
AMA Taşyürek M, Şen S. Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine. Iğdır Üniv. Fen Bil Enst. Der. March 2024;14(1):377-389. doi:10.21597/jist.1375703
Chicago Taşyürek, Mustafa, and Soner Şen. “Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine”. Journal of the Institute of Science and Technology 14, no. 1 (March 2024): 377-89. https://doi.org/10.21597/jist.1375703.
EndNote Taşyürek M, Şen S (March 1, 2024) Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine. Journal of the Institute of Science and Technology 14 1 377–389.
IEEE M. Taşyürek and S. Şen, “Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine”, Iğdır Üniv. Fen Bil Enst. Der., vol. 14, no. 1, pp. 377–389, 2024, doi: 10.21597/jist.1375703.
ISNAD Taşyürek, Mustafa - Şen, Soner. “Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine”. Journal of the Institute of Science and Technology 14/1 (March 2024), 377-389. https://doi.org/10.21597/jist.1375703.
JAMA Taşyürek M, Şen S. Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:377–389.
MLA Taşyürek, Mustafa and Soner Şen. “Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine”. Journal of the Institute of Science and Technology, vol. 14, no. 1, 2024, pp. 377-89, doi:10.21597/jist.1375703.
Vancouver Taşyürek M, Şen S. Experimental Investigation of the Effect of Using Safflower Methyl Ester-Jet A1 Blends on Engine Performance and Emissions in Mini Jet Engine. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(1):377-89.