Research Article
BibTex RIS Cite

Su Kıtlığına Maruz Bırakılmış C3 ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi

Year 2018, , 47 - 54, 30.12.2018
https://doi.org/10.21597/jist.402367

Abstract

Su kıtlığı koşulları, tarımsal alanların kullanılabilirliğini azaltmakta ve tarımsal ürünlerde verim kayıplarına

neden olmaktadır. Bu araştırmanın amacı, tüm dünyada tarımsal üretim için önemli bir problem olan su kıtlığının

buğday (Triticum aestivum L.) ve mısır (Zea mays L.) bitkileri üzerindeki etkisini fotosentetik açıdan incelemektir.

Buğday ve mısır bitkileri fotosentezi iki farklı metabolik yolla gerçekleştirdiğinden, su kıtlığında C3 ve C4

bitkilerinin fizyolojik ve metabolik davranışları arasındaki farklar gerçek su içeriği, lipid peroksidasyonu, klorofil

a fluoresansı, fotosentetik pigment içeriği, RuBisCo aktivitesi ve toplam çözünür şeker içeriği parametrelerince

ortaya konulmaktadır. Bu amaçla C3 bitkisi olan buğday ve C4 bitkisi olan mısır bitkilerine ait iki çeşit (Gelibolu

ve Ada-9516, sırasıyla) 8 gün boyunca kontrollü iklim kabininde 25°C’de, % 40-50 nemde, 16 saat ışık/ 8 saat

karanlık fotoperiyodunda, 250 µmol m-2s-1 ışık yoğunluğunda ½ kuvvet Hoagland çözeltisi kullanılarak perlit

ortamında büyütülmüşlerdir. Ardından stres grupları 7 gün boyunca -0.6 MPa PEG 6000 çözeltisi ile sulanmış ve

su kıtlığı koşulları oluşturulmuştur. Su kıtlığı incelenen tüm parametrelerce tahılları olumsuz yönde etkilemiştir.

Tüm çeşitlerin su içerikleri azalmış, zar hasarları artmış, fotosentetik aktiviteler azalmıştır. Bununla beraber,

toplam çözünür şeker oranındaki artış su kıtlığına karşı koruyucu bir mekanizma olarak değerlendirilmiştir. Bu

araştırma sonucunda mısırın buğday bitkisine göre tüm parametrelerce su kıtlığı koşullarına daha dayanıklı olduğu

belirlenmiştir.

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E, 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344.
  • Bauwe H, Hagemann M, Fernie AR, 2010. Photorespiration: players, partners and origin. Trends Plant Sci. 15: 330-336.
  • Ceylan HA, Türkan İ, Sekemen AH, 2013. Effect of Coronatine on Antioxidant Enzyme Response of Chickpea Roots to Combination of PEG-Induced Osmotic Stress and Heat Stress. J Plant Growth Regul. 32: 72-82.
  • Cornic G, 2000. Drought Stress Inhibits Photosynthesis by Decreasing Stomatal Aperture-Not by Affecting ATP Synthesis. Trends Plant Sci. 5: 187-188.
  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E, 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56: 87-94.
  • Du YC, Nose A, Kawamitsu Y, Murayama S, Wasano K, Uchida Y, 1996. An improved spectrophotometric determination of the activity of Ribulose 1,5-bisphopsphate carboxylase. Japanese Journal of Crop Science. 65: 714-721.
  • Flexas J, Medrano H, 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 83: 183-189.
  • Fu J, Huang B, 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 45: 105-114.
  • Ge T, Sui F, Bai L, Lu Y, Zhou G, 2006. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. ASC. 5(4): 291-298.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930.
  • Gowik U, Westhoff P, 2011. The path from C3 to C4 photosynthesis. Plant Physiol. 155: 56-63.
  • Hoagland DR, 1920. Optimum nutrient solutions for plants. Science. 52(1354): 562-564.
  • Hodges DM, DeLong JM, Forney CF, Prange RK, 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207: 604-611.
  • Hodgs M, 2003. Oxidative stress in postharvest produce. In: Hodges M (ed) Postharvest of Oxidative Stress in Horticultural Crops. Food Products Press, New York. 1–12 p.
  • Kerepesi I, Galiba G, 2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science. 40: 482-487.
  • Lichtenthaler HK, 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382.
  • Miyashita K, Tanakamaru S, Maitani T, Kimura K, 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot. 53: 205-214.
  • Parry MJ, Androlojc JP, Khan S, Lea PJ, Keys AJ, 2002. Rubisco activity: effects of drought stress. Ann Bot. 89: 833-839.
  • Rizza F, Pagani D, Stanca AM, Cattivelli L, 2001. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed. 120: 389-396.
  • Schreiber U, Bilger W, Neubauer C, 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of Photosynthesis. Schulze, E.D., Martyn, M., Caldwell, M.M. (Eds.), Springer-Verlag, Berlin.. 49-70 p.
  • Strasser RJ, Srivastava A, Tsimilli-Michael M, 2000. The Fluorescent Transient as a Tool to Characterise and Screen Photosynthetic Samples. Ed: Yunus M, Pathre U, Mohanty P, Probing Photosynthesis: Mechanisms, Regulation and Adaptationi Taylor and Francis, London. 445-483 p.
  • Strasser BJ, Strasser RJ, 1995. Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis, P. (Ed.), Photosynthesis: From Light to Biosphere, vol. V. Kluwer Academic Publisher, The Netherlands. 977-980 p.
  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V, 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta. 1797 (6-7): 1313-1326.
  • Türkan İ, Bor M, Özdemir F, Koca H, 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168: 223-231.
  • Uzilday B, Türkan İ, Özgür R, Sekmen AH, 2014. Strategies of ROS regulation and antioxidant defense during transition fron C3 to C4 photosynthesis in genus Flaveria under PEG-induced osmotic stress. J Plant Physiol. 171: 65-75.
  • Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Perilleux C, Javaux M, Lutts S, 2012. Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. J. Exp. Bot. 63 (12): 4359-4373.
  • Vassilev A, 2004. Cadmium-induced changes in chloroplasts lipids and photosystem activities in barley plants. Biol Plantarum. 48: 153-156.
  • Way DA, 2012. What lies between: the evolution of stomatal traits on the road to C4 photosynthesis. New Phytol. 193: 291-293.
  • Yemm EW, Willis J, 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal. 57: 508-514.

Determination of Photosynthetic Activities of C3 and C4 Plants Exposed to Water Deficit

Year 2018, , 47 - 54, 30.12.2018
https://doi.org/10.21597/jist.402367

Abstract

The water deficit conditions reduces the usability of agricultural lands and induces loss of production

of agricultural products. The aim of this study was to investigate the effect of water deficit which is an important

problem for the agricultural productivity on wheat (Triticum aestivum L.) and maize (Zea mays L.) plants by

photosynthetically. Though wheat and maize plants carry out photosynthesis through two different metabolic

pathways, the differences between the physiological and metabolic behaviors of C3 and C4 plants at water deficit

conditions was presented by the parameters of actual water content, lipid peroxidation, chlorophyll a fluorescence,

photosynthetic pigment content, RuBisCo activity and total soluble sugar content. According to this purpose,

wheat cultivar as C3 plant and maize cultivar as C4 plant (Gelibolu and Ada-9516, respectively) were grown in

controlled growth chamber at 25°C, 40-50% humidity, 16 h photoperiod and 250 µmol m-2s-1 light intensity with

½ strain Hoagland solution in perlite medium for 8 days. Then, the stress groups exposed to -0.6 MPa PEG 6000

solution to occur water deficit condition. Stress conditions adversely effected all investigated parameters of cereals.

Actual water content and photosynthetic activities were decreased, membrane injury was increased of all cultivars.

However, increased total soluble sugar ratio evaluated as defence mechanism to water deficit. In the conclusion of

this study, maize is more tolerant to water deficit conditions with all parameter than wheat.

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E, 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344.
  • Bauwe H, Hagemann M, Fernie AR, 2010. Photorespiration: players, partners and origin. Trends Plant Sci. 15: 330-336.
  • Ceylan HA, Türkan İ, Sekemen AH, 2013. Effect of Coronatine on Antioxidant Enzyme Response of Chickpea Roots to Combination of PEG-Induced Osmotic Stress and Heat Stress. J Plant Growth Regul. 32: 72-82.
  • Cornic G, 2000. Drought Stress Inhibits Photosynthesis by Decreasing Stomatal Aperture-Not by Affecting ATP Synthesis. Trends Plant Sci. 5: 187-188.
  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E, 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56: 87-94.
  • Du YC, Nose A, Kawamitsu Y, Murayama S, Wasano K, Uchida Y, 1996. An improved spectrophotometric determination of the activity of Ribulose 1,5-bisphopsphate carboxylase. Japanese Journal of Crop Science. 65: 714-721.
  • Flexas J, Medrano H, 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 83: 183-189.
  • Fu J, Huang B, 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 45: 105-114.
  • Ge T, Sui F, Bai L, Lu Y, Zhou G, 2006. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. ASC. 5(4): 291-298.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930.
  • Gowik U, Westhoff P, 2011. The path from C3 to C4 photosynthesis. Plant Physiol. 155: 56-63.
  • Hoagland DR, 1920. Optimum nutrient solutions for plants. Science. 52(1354): 562-564.
  • Hodges DM, DeLong JM, Forney CF, Prange RK, 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207: 604-611.
  • Hodgs M, 2003. Oxidative stress in postharvest produce. In: Hodges M (ed) Postharvest of Oxidative Stress in Horticultural Crops. Food Products Press, New York. 1–12 p.
  • Kerepesi I, Galiba G, 2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science. 40: 482-487.
  • Lichtenthaler HK, 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382.
  • Miyashita K, Tanakamaru S, Maitani T, Kimura K, 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot. 53: 205-214.
  • Parry MJ, Androlojc JP, Khan S, Lea PJ, Keys AJ, 2002. Rubisco activity: effects of drought stress. Ann Bot. 89: 833-839.
  • Rizza F, Pagani D, Stanca AM, Cattivelli L, 2001. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed. 120: 389-396.
  • Schreiber U, Bilger W, Neubauer C, 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of Photosynthesis. Schulze, E.D., Martyn, M., Caldwell, M.M. (Eds.), Springer-Verlag, Berlin.. 49-70 p.
  • Strasser RJ, Srivastava A, Tsimilli-Michael M, 2000. The Fluorescent Transient as a Tool to Characterise and Screen Photosynthetic Samples. Ed: Yunus M, Pathre U, Mohanty P, Probing Photosynthesis: Mechanisms, Regulation and Adaptationi Taylor and Francis, London. 445-483 p.
  • Strasser BJ, Strasser RJ, 1995. Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis, P. (Ed.), Photosynthesis: From Light to Biosphere, vol. V. Kluwer Academic Publisher, The Netherlands. 977-980 p.
  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V, 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta. 1797 (6-7): 1313-1326.
  • Türkan İ, Bor M, Özdemir F, Koca H, 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168: 223-231.
  • Uzilday B, Türkan İ, Özgür R, Sekmen AH, 2014. Strategies of ROS regulation and antioxidant defense during transition fron C3 to C4 photosynthesis in genus Flaveria under PEG-induced osmotic stress. J Plant Physiol. 171: 65-75.
  • Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Perilleux C, Javaux M, Lutts S, 2012. Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. J. Exp. Bot. 63 (12): 4359-4373.
  • Vassilev A, 2004. Cadmium-induced changes in chloroplasts lipids and photosystem activities in barley plants. Biol Plantarum. 48: 153-156.
  • Way DA, 2012. What lies between: the evolution of stomatal traits on the road to C4 photosynthesis. New Phytol. 193: 291-293.
  • Yemm EW, Willis J, 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal. 57: 508-514.
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Biyoloji / Biology
Authors

Özlem Arslan 0000-0001-7574-4811

Publication Date December 30, 2018
Submission Date March 6, 2018
Acceptance Date July 25, 2018
Published in Issue Year 2018

Cite

APA Arslan, Ö. (2018). Su Kıtlığına Maruz Bırakılmış C3 ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi. Journal of the Institute of Science and Technology, 8(4), 47-54. https://doi.org/10.21597/jist.402367
AMA Arslan Ö. Su Kıtlığına Maruz Bırakılmış C3 ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. December 2018;8(4):47-54. doi:10.21597/jist.402367
Chicago Arslan, Özlem. “Su Kıtlığına Maruz Bırakılmış C3 Ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi”. Journal of the Institute of Science and Technology 8, no. 4 (December 2018): 47-54. https://doi.org/10.21597/jist.402367.
EndNote Arslan Ö (December 1, 2018) Su Kıtlığına Maruz Bırakılmış C3 ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi. Journal of the Institute of Science and Technology 8 4 47–54.
IEEE Ö. Arslan, “Su Kıtlığına Maruz Bırakılmış C3 ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 8, no. 4, pp. 47–54, 2018, doi: 10.21597/jist.402367.
ISNAD Arslan, Özlem. “Su Kıtlığına Maruz Bırakılmış C3 Ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi”. Journal of the Institute of Science and Technology 8/4 (December 2018), 47-54. https://doi.org/10.21597/jist.402367.
JAMA Arslan Ö. Su Kıtlığına Maruz Bırakılmış C3 ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8:47–54.
MLA Arslan, Özlem. “Su Kıtlığına Maruz Bırakılmış C3 Ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi”. Journal of the Institute of Science and Technology, vol. 8, no. 4, 2018, pp. 47-54, doi:10.21597/jist.402367.
Vancouver Arslan Ö. Su Kıtlığına Maruz Bırakılmış C3 ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8(4):47-54.