Research Article
BibTex RIS Cite

Some Characterizations of Curves in n-dimensional Euclidean Space

Year 2020, , 1273 - 1285, 01.06.2020
https://doi.org/10.21597/jist.631448

Abstract

In this work, we deal with a curve whose position vector can be expressed with the help  of Frenet Frame in  n dimensional Euclidean space n IE . We classify this type of curve with regards to curvature functions and get certain consequences for T constant,  N constant and constant ratio curves in n IE .

References

  • Büyükkütük S, Öztürk G, 2015. Constant ratio curves according to Bishop frame in Euclidean space . General Mathematics Notes, 28: 81-91.
  • Büyükkütük S, Kişi İ, Öztürk G, 2017. A characterization of curves according to paralel transport frame in Euclidean space . New Trends in Mathematical Sciences, 5: 61-68.
  • Büyükkütük S, Kişi İ, Mishra V. N, Öztürk G. 2016. Some characterizations of curves in Galilean space . Facta Universitatis-Series Mathematics and Informatics, 31: 503-512..
  • Chen BY, 2001. Constant ratio Hypersurfaces. Soochow Journal of Mathematics, 28: 353-362.
  • Chen BY, 2003. When does the position vector of a space curve always lies in its rectifying plane? The American Mathematical Monthly, 110: 147-152.
  • Chen BY, 2002. Geometry of warped products as Riemannian submanifolds and related problems. Soochow Journal of Mathematics, 28: 125-156.
  • Chen BY, 2003. More on convolution of Riemannian manifolds. Beitrage Zur Algebra Und Geometrie, 44: 9-27.
  • Chen BY, Dillen F, 2005. Rectifying curves as centrodes and extremal curves. Bulletin of theInsituteMathematics. Acedemia Sinica, 33: 77–90.
  • Cambie S, Geomans W, Bussche IVD, 2016. Rectifying curves in the dimensional Euclidean space.Turkish Journalof Mathematics, 40: 210-223.
  • Gluck H, 1966. Higher curvatures of curvesin Euclidean space. The American Mathematical Monthly,73: 699–704.
  • Gray A, 1993. Modern differential geometry of curves and surfaces. CRS Press, Inc.
  • Gürpınar S, Arslan K, Öztürk G, 2015. A characterization of constant ratio curves in Euclidean space . Acta Universtatis Apulensis, 44: 39-51.
  • İlarslan K, Nesovic E, 2008. Some characterizations of rectifying curves in the Euclidean space . Turkish Journal of Mathematics, 32: 21-30.
  • Kişi İ, Öztürk G, 2015. Constant ratio curves according to Bishop frame in Minkowski space . Facta Universtatis, Series: Mathematics and Informatics, 30: 527-538.
  • Kişi İ, Büyükkütük S, Öztürk G, 2018. Constant ratio timelike curves in pseudo-Galilean space . Creat. Math. Inform., 27: 57-62.
  • Kişi İ, Büyükkütük S, Öztürk G, Zor A, 2017. A new characterization of curves on dual unit sphere. Journal of Abstract and Computational Mathematics, 2: 71-76.
  • Klein F, Lie S, 1871. Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendich vielen vartauschbaren Transformationen in sich ubergeben. Mathematische Annalen, 4: 50–84.
  • Öztürk G, Arslan K, Kişi İ, 2018. Constant ratio curves in Minkowski space . Matematicki Bilten, 42: 49-60.
  • Öztürk G, Büyükkütük S, Kişi İ, 2017. A characterization of curves in Galilean space . Bulletin of the Irannian Mathematical Society, 43: 771-780.
  • Öztürk G, Kişi İ, Büyükkütük S, 2017. Constant ratio quaternionic curves in Euclidean spaces. Applied Clifford Algebras, 27: 1659-1673.

Some Characterizations of Curves in n-dimensional Euclidean Space

Year 2020, , 1273 - 1285, 01.06.2020
https://doi.org/10.21597/jist.631448

Abstract

In this work, we deal with a curve whose position vector can be expressed with the help of Frenet Frame in  n dimensional Euclidean space n IE . We classify this type of curve with regards to curvature functions and get certain consequences for T constant,  N constant and constant ratio curves in n IE .

References

  • Büyükkütük S, Öztürk G, 2015. Constant ratio curves according to Bishop frame in Euclidean space . General Mathematics Notes, 28: 81-91.
  • Büyükkütük S, Kişi İ, Öztürk G, 2017. A characterization of curves according to paralel transport frame in Euclidean space . New Trends in Mathematical Sciences, 5: 61-68.
  • Büyükkütük S, Kişi İ, Mishra V. N, Öztürk G. 2016. Some characterizations of curves in Galilean space . Facta Universitatis-Series Mathematics and Informatics, 31: 503-512..
  • Chen BY, 2001. Constant ratio Hypersurfaces. Soochow Journal of Mathematics, 28: 353-362.
  • Chen BY, 2003. When does the position vector of a space curve always lies in its rectifying plane? The American Mathematical Monthly, 110: 147-152.
  • Chen BY, 2002. Geometry of warped products as Riemannian submanifolds and related problems. Soochow Journal of Mathematics, 28: 125-156.
  • Chen BY, 2003. More on convolution of Riemannian manifolds. Beitrage Zur Algebra Und Geometrie, 44: 9-27.
  • Chen BY, Dillen F, 2005. Rectifying curves as centrodes and extremal curves. Bulletin of theInsituteMathematics. Acedemia Sinica, 33: 77–90.
  • Cambie S, Geomans W, Bussche IVD, 2016. Rectifying curves in the dimensional Euclidean space.Turkish Journalof Mathematics, 40: 210-223.
  • Gluck H, 1966. Higher curvatures of curvesin Euclidean space. The American Mathematical Monthly,73: 699–704.
  • Gray A, 1993. Modern differential geometry of curves and surfaces. CRS Press, Inc.
  • Gürpınar S, Arslan K, Öztürk G, 2015. A characterization of constant ratio curves in Euclidean space . Acta Universtatis Apulensis, 44: 39-51.
  • İlarslan K, Nesovic E, 2008. Some characterizations of rectifying curves in the Euclidean space . Turkish Journal of Mathematics, 32: 21-30.
  • Kişi İ, Öztürk G, 2015. Constant ratio curves according to Bishop frame in Minkowski space . Facta Universtatis, Series: Mathematics and Informatics, 30: 527-538.
  • Kişi İ, Büyükkütük S, Öztürk G, 2018. Constant ratio timelike curves in pseudo-Galilean space . Creat. Math. Inform., 27: 57-62.
  • Kişi İ, Büyükkütük S, Öztürk G, Zor A, 2017. A new characterization of curves on dual unit sphere. Journal of Abstract and Computational Mathematics, 2: 71-76.
  • Klein F, Lie S, 1871. Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendich vielen vartauschbaren Transformationen in sich ubergeben. Mathematische Annalen, 4: 50–84.
  • Öztürk G, Arslan K, Kişi İ, 2018. Constant ratio curves in Minkowski space . Matematicki Bilten, 42: 49-60.
  • Öztürk G, Büyükkütük S, Kişi İ, 2017. A characterization of curves in Galilean space . Bulletin of the Irannian Mathematical Society, 43: 771-780.
  • Öztürk G, Kişi İ, Büyükkütük S, 2017. Constant ratio quaternionic curves in Euclidean spaces. Applied Clifford Algebras, 27: 1659-1673.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

Sezgin Büyükkütük 0000-0002-1845-0822

İlim Kişi 0000-0002-4785-8165

Günay Öztürk 0000-0002-1608-0354

Kadri Arslan 0000-0002-1440-7050

Publication Date June 1, 2020
Submission Date October 9, 2019
Acceptance Date January 12, 2020
Published in Issue Year 2020

Cite

APA Büyükkütük, S., Kişi, İ., Öztürk, G., Arslan, K. (2020). Some Characterizations of Curves in n-dimensional Euclidean Space. Journal of the Institute of Science and Technology, 10(2), 1273-1285. https://doi.org/10.21597/jist.631448
AMA Büyükkütük S, Kişi İ, Öztürk G, Arslan K. Some Characterizations of Curves in n-dimensional Euclidean Space. Iğdır Üniv. Fen Bil Enst. Der. June 2020;10(2):1273-1285. doi:10.21597/jist.631448
Chicago Büyükkütük, Sezgin, İlim Kişi, Günay Öztürk, and Kadri Arslan. “Some Characterizations of Curves in N-Dimensional Euclidean Space”. Journal of the Institute of Science and Technology 10, no. 2 (June 2020): 1273-85. https://doi.org/10.21597/jist.631448.
EndNote Büyükkütük S, Kişi İ, Öztürk G, Arslan K (June 1, 2020) Some Characterizations of Curves in n-dimensional Euclidean Space. Journal of the Institute of Science and Technology 10 2 1273–1285.
IEEE S. Büyükkütük, İ. Kişi, G. Öztürk, and K. Arslan, “Some Characterizations of Curves in n-dimensional Euclidean Space”, Iğdır Üniv. Fen Bil Enst. Der., vol. 10, no. 2, pp. 1273–1285, 2020, doi: 10.21597/jist.631448.
ISNAD Büyükkütük, Sezgin et al. “Some Characterizations of Curves in N-Dimensional Euclidean Space”. Journal of the Institute of Science and Technology 10/2 (June 2020), 1273-1285. https://doi.org/10.21597/jist.631448.
JAMA Büyükkütük S, Kişi İ, Öztürk G, Arslan K. Some Characterizations of Curves in n-dimensional Euclidean Space. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:1273–1285.
MLA Büyükkütük, Sezgin et al. “Some Characterizations of Curves in N-Dimensional Euclidean Space”. Journal of the Institute of Science and Technology, vol. 10, no. 2, 2020, pp. 1273-85, doi:10.21597/jist.631448.
Vancouver Büyükkütük S, Kişi İ, Öztürk G, Arslan K. Some Characterizations of Curves in n-dimensional Euclidean Space. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(2):1273-85.