In this study, the corrosion behaviors of AISI 304L austenitic stainless steel samples were subjected to pack-boriding at 850, 900 and 950 °C process temperatures for 2, 4 and 6 hours with microwave hybrid heating, and examined. Boride layers were characterized by optical microscope and XRD. As a result of XRD analyses, the presence of FeB, Fe2B, Cr2B and Ni2B compounds in the boride layers were determined formed on the sample surfaces. As an alternative to conventional heating, AISI 304L austenitic stainless steel samples subjected to pack-boriding with microwave hybrid heating, as a result of the corrosion tests carried out during the 3rd, 7th and 10th days in 2% V/V (for volume per volume) HNO3 acid solution, the corrosion resistance of the AISI 304L austenitic stainless steel samples as loss in mass increased with the increase in the temperature and duration of the boriding process and the corrosion resistance increased 95 times compared to the untreated AISI 304L stainless steel samples.
In this study, the corrosion behaviors of AISI 304L austenitic stainless steel samples were subjected to pack-boriding at 850, 900 and 950 °C process temperatures for 2, 4 and 6 hours with microwave hybrid heating, and examined. Boride layers were characterized by optical microscope and XRD. As a result of XRD analyses, the presence of FeB, Fe2B, Cr2B and Ni2B compounds in the boride layers were determined formed on the sample surfaces. As an alternative to conventional heating, AISI 304L austenitic stainless steel samples subjected to pack-boriding with microwave hybrid heating, as a result of the corrosion tests carried out during the 3rd, 7th and 10th days in 2% V/V (for volume per volume) HNO3 acid solution, the corrosion resistance of the AISI 304L austenitic stainless steel samples as loss in mass increased with the increase in the temperature and duration of the boriding process and the corrosion resistance increased 95 times compared to the untreated AISI 304L stainless steel samples.
Primary Language | English |
---|---|
Subjects | Mechanical Engineering |
Journal Section | Makina Mühendisliği / Mechanical Engineering |
Authors | |
Publication Date | March 1, 2021 |
Submission Date | November 9, 2020 |
Acceptance Date | December 14, 2020 |
Published in Issue | Year 2021 |